

Operation Manual

Astraada DRV-28 Communication extension card

The owner of Astraada brand is ASTOR Sp. z o.o.

Safety precautions

The extension card can be installed and operated only by people who have taken part in professional training on electrical operation and safety knowledge, obtained the certification, and been familiar with all steps and requirements for installing, performing commissioning on, operating, and maintaining the device, and are capable of preventing all kinds of emergencies.

Before installing, removing, or operating the communication card, read the safety precautions described in this manual and the variable-frequency drive (VFD) operation manual carefully to ensure safe operation.

For any physical injuries or damage to the device caused due to your neglect of the safety precautions described in this manual and the VFD operation manual, our company shall not be held liable.

- You need to open the housing of the VFD when installing or removing the communication card. Therefore, you must disconnect all power supplies of the VFD and ensure that the voltage inside the VFD is safe. For details, see the description in the VFD operation manual. Severe physical injuries or even death may be caused if you do not follow the instructions.
- Store the communication card in a place that is dustproof and dampproof without electric shocks or mechanical pressure.
- The communication card is electrostatic sensitive. Take measurements to prevent electrostatic discharge when performing operations involving it.
- Tighten the screws up when installing the communication card. Ensure that it is firmly fixed and properly grounded.

Terminology and abbreviations

CAN	Controller Area Network			
СОВ	Communication object, a transmitted unit on a CAN network. Communication objects (COBs) carry data and can be transmitted through the whole network. A COB is part of a CAN message frame.			
EDS	ectronic datasheet, an ASCII file for node configuration, required hen a CANopen network is configured. An EDS file contains neral information about nodes and their dictionary objects arameters).			
NMT	Network management, one of the CAN application-layer service elements in the CAN reference model. It is used for the initialization, configuration, and fault handling of a CAN network.			
Object dictionary	Stores information about all COBs identified by a device.			
PDO	Process data object, a type of COBs, used to transmit process data, such as control command, set values, state values, and actual values.			
PDOn Tx	PDO command transmitted by a slave station to the master station, where n refers to 1, 2, 3, 4.			
PDOn Rx	PDO command transmitted by the master station and received by a slave station, where n refers to 1, 2, 3, 4.			
SDO	Service data object, a type of COB, used to transmit non-time key data, such as parameter values.			
RO	Indicates read-only access.			
RW	Indicates the read and write access.			
SYNC	Indicates synchronous transmission.			
Node-ID	Node ID, that is, address of a communication card.			
0x	0x Indicates that a number with this prefix is a hexadecimal value, for example, 0x10 indicates the decimal value 16.			

Contents

Chapter 1 Product confirmation	
Chapter 2 PROFIBUS communication card	
2.1 Overview	
2.2 Features	
2.3 Electrical connection	
2.4 Bus network connection	
2.5 System configuration	6
2.6 PROFIBUS-DP communication	
Chapter 3 CANopen communication card	.17
3.1 Overview	.17
3.2 Features	.17
3.3 Electrical wiring	.18
3.4 Communication	.18
3.4.1 Packet format	.18
3.4.2 CANopen state transition	
3.4.3 Management service command (NMT)	.21
3.4.4 Node protection (NMT Node Guarding)	.21
3.4.5 Heartbeat packet (Heartbeat Producer)	.22
3.4.6 Start packet (NMT Boot-up)	.23
3.4.7 Synchronous packet object (SYNC)	.23
3.4.8 Emergency packet object (EMCY)	.24
3.4.9 Service data object (SDO)	.26
3.5 Process data object (PDO)	.29
3.5.1 Triggering mode of PDO Tx	.29
3.5.2 PDO1	.30
3.5.3 PDO2 Rx	.33
3.5.4 PDO2 Tx	.35
3.5.5 PDO3 Rx and PDO4 Rx	.36
3.5.6 PDO3 Tx and PDO4 Tx	.37
3.6 Monitoring process data through SDO commands	.38
3.7 Baud rate and communication address setting	.41
3.7.1 Baud rate setting	
3.7.2 Communication address setting	.41
3.7.3 Function codes related to transmitted and received PZD	.41
Chapter 4 PROFINET communication card	.44
4.1 Overview	.44
4.2 Features	.44
4.3 Electrical wiring	.46
4.4 Communication	
4.4.1 Packet format	.46
4.4.2 PROFINET I/O communication	.47
EtherCAT communication card	.54
4.5 Overview	.54
4.6 Features	.54
4.7 Electrical wiring	.56
4.8 Communication	.56
4.8.1 CoE reference model	.56
4.8.2 EtherCAT slave station information	.57
4.8.3 EtherCAT state machine	
4.8.4 PDO mapping	
4.8.4 PDO mapping 4.8.5 DC-based network synchronization A.1 CiA402 device protocol	.59
4.8.5 DC-based network synchronization	.59 .59
4.8.5 DC-based network synchronization A.1 CiA402 device protocol	.59 .59 .60
4.8.5 DC-based network synchronization A.1 CiA402 device protocol 4.8.6 CoE state machine	.59 .59 .60 .63
4.8.5 DC-based network synchronization A.1 CiA402 device protocol 4.8.6 CoE state machine 4.8.7 Device running mode 4.9 Function code modification	.59 .59 .60 .63 .64
4.8.5 DC-based network synchronization A.1 CiA402 device protocol 4.8.6 CoE state machine 4.8.7 Device running mode	.59 .59 .60 .63 .64 .64

Chapter 1 Product confirmation

Check the following after receiving a communication extension card product:

- Whether the communication card is damaged.
- Whether the received communication card is the one you purchase according to the bar code label on the PCB.
- Whether all the following items are contained in the product package:
- One communication card, one tie wrap, one tie, one M3 screw, and one manual.
- If the communication card is damaged, a wrong model is delivered, or some items are missing, contact the supplier in a timely manner.
- Obtain the ESD file of the communication card from ASTOR. The file is named *communication card model.eds*.
- Confirm the environmental requirements for application.

Item	Requirement
Operation	-10-+50°C
temperature	-10-+30 C
Storage temperature	-20–+60°C
Relative humidity	5%–95%
Other weather	No condensation, ice, rain, snow, or hail;
conditions	solar radiation < 700 W/m ²
Air pressure	70–106 kPa
Vibration and	5.9m/s ² (0.6g) at the sine vibration of 9 Hz to 200 Hz
impact	

Table 1-1 Environmental requirements

Chapter 2 PROFIBUS communication card

2.1 Overview

PROFIBUS communication cards are optional accessories for VFDs. They can be used to connect VFDs to PROFIBUS networks. On a PROFIBUS network, VFDs are slave devices. The following functions can be performed by using a PROFIBUS communication card:

- Transmit control commands (such as start, stop, and fault reset) to a VFD.
- Transmit speed or torque reference signals to a VFD.
- Obtain state values and actual values from a VFD.
- Modify parameter values of a VFD.

2.2 Features

- PROFIBUS is an international open fieldbus standard that can implement data exchange between various automation components. It is widely applicable to automation in various industries, such as the manufacturing, process, building, transportation, and power industries. It provides effective solutions for implementing integrated automation and intelligentization of field devices.
- PROFIBUS consists of three mutually compatible components, namely PROFIBUS-Decentralised Peripherals (DP), PROFIBUS-Process Automation (PA), and PROFIBUS-Fieldbus Message Specification (FMS). It adopts the master-slave mode and is generally used for periodic data exchange between VFD devices. PRNV PROFIBUS-DP adapter modules support only the PROFIBUS-DP protocol.
- 3. The transmission media of a PROFIBUS field bus are twisted pairs (complying with the RS-485 standard), paired cables, or optical cables. The baud rate ranges from 9.6 kbit/s to 12 Mbit/s. The maximum length of a fieldbus cable must be within the range of 100 m to 1200 m, and the specific length depends on the selected transmission rate (see the chapter of "Technical Data" in the VFD manual). A maximum of 31 nodes can be connected to one PROFIBUS network segment when no repeater is used. If repeaters are used, a maximum of 127 nodes (including the repeaters and master stations) can be connected.
- 4. In PROFIBUS communication, tokens are transmitted between master stations or by master stations to slave stations. Single-master or multi-master systems are supported. The node to respond to the command of a master is selected by the master station, generally a programmable logic controller (PLC). For cyclic master-slave user data transmission and non-cyclic master-master data transmission, a master can also transmit commands to multiple nodes in broadcast mode. When the broadcast mode is adopted, the nodes do not need to transmit feedback signals to the master. On PROFIBUS networks, nodes cannot communicate with each other.
- The PROFIBUS protocol is described in details in the EN50170 standard. For more information about PROFIBUS, refer to the EN50170 standard.

2.3 Electrical connection

1. Node selection

The node address of a device is unique on a PROFIBUS bus. The node address is set through the function parameter P15.01, and the value ranges from 0 to 127.

2. Fieldbus terminator

Each fieldbus segment is configured with two bus terminators, one on each end, to prevent operation errors. Bus terminators can protect the fieldbus signal against electrical reflections. The dual in-line

package (DIP) switch on the printed circuit board (PCB) of a communication card is used to connect to the fieldbus terminator. If the communication card is the last or first module on the network, the bus terminator must be set to ON. When a PROFIBUS D-sub connector with a built-in terminator is used, you must disconnect the communication card from the terminator.

2.4 Bus network connection

1. Bus communication interfaces

The most common PROFIBUS transmission mode is the shielded twisted-pair copper cable transmission, in which shielded twisted-pair copper cables (complying with the RS-485 standard) are used.

The basic characteristics of this transmission technology are described as follows:

- · Network topology: Linear bus with one active fieldbus terminal resistor on each end
- Transmission rate: 9.6 kbit/s-12 Mbit/s
- Media: Shielded or unshielded twisted-pair cables, depending on the EMC environmental conditions
- Number of stations: 32 on each network segment (without repeater); a maximum of 127 (with repeaters)
- Plug connection: 9-pin D-type plug. The following figure shows the pins of the connector.

•

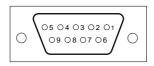


Figure 2-1 Plug of the connector

Connecto	or pin	Description
1	-	Unused
2	-	Unused
3	B-Line	Data+ (twisted-pair wire 1)
4	RTS	Transmitting requests
5	GND_BUS	Isolation ground
6	+5V BUS	Isolated 5 V DC power supply
7	-	Unused
8	A-Line	Data- (twisted-pair wire 2)
9	-	Unused
Housing	SHLD	PROFIBUS cable shielding wire

Table 2-1 Connector pins

The +5V and GND_BUS pins are used for bus terminators. Optical transceivers (RS-485) and some other devices may need to obtain external power supplies through these pins.

For some devices, the transmission direction is determined by using the RTS pin. In regular application, only the A-Line, B-Line, and SHLD pins are used.

It is recommended that you use the standard DB9 connectors manufactured by Siemens. If the

communication baud rate is required to be higher than 187.5 kbps, strictly follow the wiring standards stipulated by Siemens.

2. Repeaters

A maximum of 32 stations (including the master station) can be connected to each fieldbus segment. If the number of stations to be connected to a fieldbus segment exceeds 32, you need to use repeaters to connect the fieldbus segments. Generally, the number of repeaters connected in series cannot exceed 3.

Note: No station address is provided for repeaters, but they are calculated as stations.

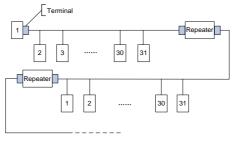


Figure 2-2 Repeaters

3. Transmission rates and maximum transmission distances

The maximum length of a cable depends on the transmission rate.

Table 2-2 describes the transmission rates and corresponding transmission distances.

Table 2-2 Transmission rates a	and corresponding trans	mission distances

.11.

Transmission rate (kbps)	A-type wire (m)	B-type wire (m)
9.6	1200	1200
19.2	1200	1200
93.75	1200	1200
187.5	1000	600
500	400	200
1500	200	
12000	100	

Table 2-3	Transmissi	on wire	parame	ters

Parameter	A-type wire	B-type wire
Impedance (Ω)	135–165	100–130
Capacitance of a unit length (pF/m)	< 30	< 60
Circuit resistance (Ω/km)	110	
Wire core diameter (mm)	0.64	> 0.53
Sectional area of wire core (mm ²)	> 0.34	> 0.22

Besides the shielded twisted-pair copper cables, you can also use optical fibers for transmission in a PROFIBUS system. When a PROFIBUS system is applied in an environment with strong electromagnetic interference, you can use optical fiber conductors to increase the high-speed transmission distance. Two types of optical fiber conductors can be used. One is low-cost plastic fiber conductors that can be used when the transmission distance is shorter than 50 m; and the other is glass fiber conductors that can be used when the transmission distance is shorter than 1 km.

4. PROFIBUS bus connection diagram

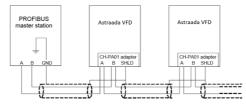


Figure 2-3 PROFIBUS bus connection

Figure 2-3 shows the terminal wiring. The cables are standard PROFIBUS cables, each consisting of a twisted pair and shielding layer. The shielding layers of PROFIBUS cables are directly grounded on all nodes. You can select a proper grounding mode based on the actual situation on site.

Note:

- 1. When connecting the stations, ensure that the data cables are not twisted together. For systems to be used in environments with strong electromagnetic radiation, you need to use cables with shielding layers. The shielding layers can improve electromagnetic compatibility (EMC).
- 2. If shielding braid or shielding foil is used, connect the two ends of it to the protective ground and cover an area as large as possible to ensure high conductivity. In addition, data cables need to be separated from high-voltage cables.

3. When the data transmission rate is higher than 500 kbit/s, do not use short stub. Use the plugs available in the market. Data input and output cables can be directly connected to those plugs, and the plug of the communication card can be connected or disconnected at any time without interrupting data communication of other stations.

2.5 System configuration

1. System configuration

After the communication card is properly installed, you need to configure the master station and VFD to enable the communication between the master station and communication card.

One device description file named GSD file is required for each PROFIBUS slave station on the PROFIBUS bus. The GSD file is used to describe the characteristics of the PROFIBUS-DP device. The software we provide for users includes information about the GSD file of the VFD. You can obtain the type definition files (GSD files) of various masters from ASTOR.

Paramet er No.	Parameter name	Setting options		Default setting						
0	Module type	Read	d-only	PROFIBUS-DP						
1	Node address	0-	-99	2						
			0: 9.6							
			1: 19.2							
		kbit/s	2: 45.45							
		KUIL/S	3: 93.75							
	Baud rate setting	David rate	Devid vete	David rate	Devid rate	4: 187.5				
2			5: 500	6						
		6: 1.5 7: 3 Mbit/s 8: 6 9: 9	setting	setting	Setting	setting	Setting	6: 1.5	6: 1.5	
							7: 3			
				Mbit/s 8:6	8:6					
			9: 9							
			10: 12							
3	PZD3	0–6	5535	0						
4	PZD4	0–6	5535	0						
		0–65535		0						
10	PZD12	0–65535		0						

Table 2-4 Communication card configuration parameters

2. Module type

This parameter displays the model of the communication card detected by the VFD. You cannot modify the value of this parameter. If the parameter is not defined, communication between the communication card and VFD cannot be established.

3. Node address

On the PROFIBUS network, each device corresponds to one unique node address. The node address is set through P15.01.

4. GSD file

One device description file named GSD file is required for each PROFIBUS slave station on the PROFIBUS bus. The GSD file is used to describe the characteristics of the PROFIBUS-DP device. The GSD file includes all parameters defined for the device, including the supported bard rate, supported information length, input/output data amount, and definitions of diagnosis data.

You can obtain the type definition files (GSD files) of various masters from ASTOR's official website and copy the GSD files to the corresponding subdirectories on the configuration tool software. For details about the operation and how to configure the PROFIBUS system, see the instructions for the related system configuration software.

2.6 PROFIBUS-DP communication

1. PROFIBUS-DP

PROFIBUS-DP is a distributed input/output (I/O) system. It enables a master to use a large number of peripheral modules and on-site devices. Data transmission is periodic: The master reads information

input by a slave and transmits a feedback signal to the slave.

2. SAP

The PROFIBUS-DP system uses the services at the data link layer (Layer 2) through service access points (SAPs). Functions of each SAP are clearly defined. For more information about SAPs, see the related PROFIBUS master user manuals, that is, PROFIdrive—PROFIBUS models or EN50170 standards (PROFIBUS protocol) for variable-speed drives.

3. PROFIBUS-DP information frame data structure

The PROFIBUS-DP system allows fast data exchange between the master and VFD devices. For VFD devices, data is always read and written in the master/slave mode. VFDs always function as slave stations, and one address is clearly defined for each slave station. PROFIBUS transmits 16-bit packets periodically. Figure 2-4 shows the structure of the packet.

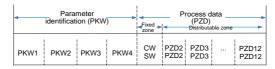


Figure 2-4 PROFIBUS-DP information frame data structure

Parameter zone:

PKW1—Parameter identification

PKW2—Array index number

PKW3—Parameter value 1

PKW4—Parameter value 2

Process data:

CW—Control word (transmitted from the master to a slave. For description, see

Table 2-5)

SW-State word (transmitted from a slave to the master. For description, see

Table 2-7.)

PZD-Process data (defined by users)

(When the process data is output by the master to a slave, it is a reference value; and when the process data is input by a slave to the master, it is an actual value.)

PZD zone (process data zone): The PZD zone in a communication packet is designed for controlling and monitoring a VFD. The master and slave stations always process the received PZD with the highest priority. The processing of PZD takes priority over that of PKW, and the master and slave stations always transmit the latest valid data on the interfaces.

CWs and SWs

Using CWs is the basic method of the fieldbus system to control VFDs. A CW is transmitted by the fieldbus master station to a VFD device. In this case, the AS28PBS0001 communication card functions as a gateway. The VFD device responds to the bit code information of the CW and feeds state information back to the

master through an SW.

Reference value: A VFD device may receive control information in multiple channels, including analog and digital input terminals, VFD control panel, and communication modules (such as RS485 and AS28PBS0001 communication cards). To enable the control over VFD devices through PROFIBUS, you need to set the communication module as the controller of the VFD device.

Actual value: An actual value is a 16-bit word that includes information about VFD device operation. The monitoring function is defined through VFD parameters. The conversion scale of an integer transmitted as an actual value from the VFD device to the master depends on the set function. For more description, see the related VFD operation manual.

Note: A VFD device always checks the bytes of a CW and reference value.

Task packet (master station -> VFD)

CW: The first word in a PZD task packet is a VFD CW.

Table 2-5 describes Astraada DRV-28 series VFD CWs.

Bit	Name	Value	State to be entered/description		
		1	Forward running		
		2	Reverse running		
		3	Forward jogging		
0-7	Communication-based	4	Reverse jogging		
0-7	control command	5	Decelerating to stop		
		6	Coasting to stop (emergency stop)		
		7	Fault reset		
		8	Jogging stopped		
8	Enabling writing	1	Enabling writing (mainly through PKW1		
Ŭ		-	to PKW4)		
9–	Motor group setting	00	Motor 1		
10		01	Motor 2		
		1	Enabling the switching between torque		
11	Control mode switching	-	control and speed control		
		0	No switching		
			1	1	Enabling the function for resetting
12	Resetting power	-	power consumption to zero		
	consumption to zero	0	Disabling the function for resetting		
		Ű	power consumption to zero		
13	Pre-excitation	1	Enabling pre-excitation		
15	Trefexcitation	0	Disabling pre-excitation		
14	DC braking	1	Enabling DC braking		
14	DC DIaking	0	Disabling DC braking		
15	Heartbeat reference	1	Enabling heartbeat		
15		0	Disabling heartbeat		

Table 2-5 Astraada DRV-28 series VFD CWs

Reference value (REF): The second to twelfth words in a PZD task packet are the main settings. The main frequency settings are provided by the main setting signal source. Table 2-6 describes the settings of Astraada DRV-28 series VFD.

Function code	Word	Value range	Default value
P15.02	Received PZD2	0: Invalid 1: Set frequency (0–Fmax, unit: 0.01 Hz)	0
P15.03	Received PZD3	2: PID reference (0–1000, in which 1000 corresponds to 100.0%)	0
P15.04	Received PZD4	 PID feedback (0–1000, in which 1000 corresponds to 100.0%) Torque setting (-3000-+3000, in which 1000 	0
P15.05	Received PZD5	corresponds to 100.0% of the rated current of the motor)	0
P15.06	Received PZD6	5: Setting of the upper limit of forward running frequency (0–Fmax, unit: 0.01 Hz)	0
P15.07	Received PZD7	6: Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01 Hz) 7: Upper limit of the electromotive torque (0–	0
P15.08	Received PZD8	3000, in which 1000 corresponds to 100.0% of the rated current of the motor)	0
P15.09	Received PZD9	 Upper limit of the brake torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the motor) 	0
P15.10	Received PZD10	9: Virtual input terminal command, 0x000–0x3FF (corresponding to S8, S7, S6, S5, HDIB, HDIA, S4,	0
P15.11	Received PZD11	S3, S2, and S1 in sequence) 10: Virtual output terminal command, 0x00–0x0F	0
P15.12	Received PZD12	 (corresponding to RO2, RO1, HDO, and Y1 in sequence) 11: Voltage setting (for V/F separation) (0-1000, in which 1000 corresponds to 100.0% of the rated voltage of the motor) 12: AO output setting 1 (-1000-+1000, in which 1000 corresponds to 100.0%) 13: AO output setting 2 (-1000-+1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed number) 15: LSB of position reference (unsigned number) 16: MSB of position feedback (signed number) 17: LSB of position feedback (unsigned number) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 	0

Table 2-6 Settings of Astraada DRV-28 series VFD

Response packet (VFD -> master station)

SW: The first word in a PZD response packet is a VFD SW.

Table 2-7 describes the VFD SWs.

Bit	Name	Value	State to be entered/description
0-7		1	In forward running
		2	In reverse running
	Dura in a state	3	Stopped
0-7	Running state	4	Faulty
		5	POFF
		6	In pre-excitation
8	Rus voltago ostablishod	1	Ready to run
0	Bus voltage established	0	Not ready to run
9–	Martin and Caralland	0	Motor 1
10	Motor group feedback	1	Motor 2
11	Motor type feedback	1	Synchronous motor
11		0	Asynchronous motor
12	Overload pre-alarm feedback	1	Overload pre-alarm generated
12		0	No overload pre-alarm generated
13		0	Keypad-based control
15	Dup (Stop mode	1	Terminal-based control
14	Run/Stop mode	2	Communication-based control
- '		3	Reserved
15	Heartbeat feedback	1	Heartbeat feedback
12		0	No heartbeat feedback

Table 2-7 Astraada DRV-28 series VFD SWs

Actual value (ACT): The second to twelfth words in a PZD task packet are the main actual values. The main actual frequency values are provided by the main actual value signal source.

Function code	Word	Value range	Default value
P15.13	Transmitted PZD2	0: Invalid	0
P15.14	Transmitted PZD3	1: Running frequency (×100, Hz)	0
P15.15	Transmitted PZD4	2: Set frequency (×100, Hz)	0
P15.16	Transmitted PZD5	3: Bus voltage (×10, V)	0
P15.17	Transmitted PZD6	4: Output voltage (×1, V)	0
P15.18	Transmitted PZD7	5: Output current (×10, A)	0
P15.19	Transmitted PZD8	6: Actual output torque (×10, %)	0
P15.20	Transmitted PZD9	7: Actual output power (×10, %)	0

Table 2-8 Actual state values of Astraada DRV-28 series VFD

\M/ord	Value renge	Default
word	value range	value
Transmitted PZD10	8: Rotating speed of the running	0
Transmitted PZD11	(×1, RPM)	0
	9: Linear speed of the running (×1,	
	m/s)	
	10: Ramp frequency reference	
	11: Fault code	
	12: Al1 value (×100, V)	
	13: Al2 value (×100, V)	
	14: Al3 value (×100, V)	
	15: HDIA frequency (×100, kHz)	
Transmitted PZD12		
		0
		-
	•	
	, ,	
	•	
	, ,	
	•	
	,	
	•	
	Transmitted PZD11	Transmitted PZD108: Rotating speed of the running (×1, RPM)9: Linear speed of the running (×1, m/s)9: Linear speed of the running (×1, m/s)10: Ramp frequency reference11: Fault code12: Al1 value (×100, V)13: Al2 value (×100, V)13: Al2 value (×100, V)14: Al3 value (×100, V)15: HDIA frequency (×100, kHz)16: Terminal input state17: Terminal output state18: PID reference (×100, %)19: PID feedback (×100, %)

PKW zone (parameter identification flag PKW1—numerical zone): The PKW zone describes the processing mode of the parameter identification interface. A PKW interface is not a physical interface but a mechanism that defines the transmission mode (such reading and writing a parameter value) of a parameter between two communication ends.

ide	entification		0	 ne ss data	
PKW1	PKW2	PKW3	PKW4	PZD2 PZD2	
Request No. Response No.	Parameter address	Parameter value error No.	Parameter value		

Figure 2-5 Parameter identification zone

In the periodic PROFIBUS-DP communication, the PKW zone consists of four 16-bit words.

Table 2-9 describes each word in the PKW zone.

First word PKW 1 (16 bits)

Bits 15-00	Task or response identification flag	0–7					
	Second word PKW2 (16 bits)						
Bits 15-00	Basic parameter address	0–247					
Third word PKW3 (16 bits)							
	Value (most significant word) of a						
Bits 15-00	parameter or error code of the	00					
	returned value						
	Fourth word PKW4 (16 bits)						
Bits 15-00	Value (least significant word) of a	0-65535					
BIIS 13-00	parameter	0-05555					

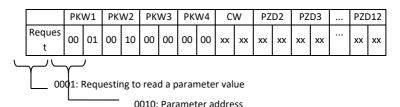
Note: If the master station requests the value of a parameter, the values in PKW3 and PKW4 of the packet that the master station transmits to the VFD are no longer valid.

Task request and response: When transmitting data to a slave, the master uses a request number, and the slave uses a response number to accept or reject the request. Table 2-10 describes the request and response functions.

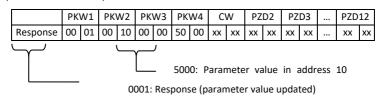
Reque	st No. (from the master to a slave)	Response signal				
Request No.	Function	Acceptance	Rejection			
0	No task	0	-			
1	Requesting the value of a parameter	1, 2	3			
2	Modifying a parameter value (one word) [modifying the value only on RAM]		3 or 4			
3	Modifying a parameter value (two words) [modifying the value only on RAM]		3 or 4			
4	Modifying a parameter value (one word) [modifying the value on both RAM and EEPROM]		3 or 4			
5	Modifying a parameter value (two words) [modifying the value only on both RAM and EEPROM]		3 or 4			

The requests #2, #3, and #5 are not supported currently.

	Response No. (from a slave to the master)								
Response No.	Function								
0	No response								
1	Transmitting the value of a parameter (one word)								
2	2 Transmitting the value of a parameter (two words)								
	The task cannot be executed and one of the following error								
	number is returned:								
	1: Invalid command								
	2: Invalid data address								
	3: Invalid data value								
3	4: Operation failure								
	5: Password error								
	6: Data frame error								
	7: Parameter read only								
	8: Parameter cannot be modified during VFD running								
	9: Password protection								

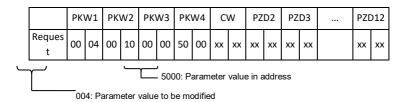

Table 2-11 Respo	onse identification	flag PKW1
------------------	---------------------	-----------

PKW examples


Example 1: Reading the value of a parameter

You can set PKW1 to 1 and PKW2 to 10 to read a frequency set through keypad (the address of the frequency set through keypad is 10), and the value is returned in PKW4.

Request (master station -> VFD)


Response (VFD -> master station)

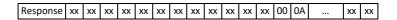
Example 2: Modifying the value of a parameter (on both RAM and EEPROM)

You can set PKW1 to 4 and PKW2 to 10 to modify a frequency set through keypad (the address of the frequency set through keypad is 10), and the value to be modified (50.00) is in PKW4.

Request (master station -> VFD)

Response (VFD-> master station)

		PK	W1	PK	W2	PK	W3	PK	W4	C	V	ΡZ	D2	ΡZ	D3		PZ	012
Resp	ponse	00	01	00	10	00	00	50	00	хх	хх	xx	хх	хх	хх		хх	хх
L						00	001:	Res	spor	ise	(par	ame	ter	valu	ie u	pdated)		


PZD examples: The transmission of the PZD zone is implemented through VFD function code settings. For the function codes, see the related ASTRAADA VFD operation manual.

Example 1: Reading the process data of a VFD

In this example, PZD3 is set to "8: Rotating speed of the running" through the VFD parameter P15.14. This operation sets the parameter forcibly. The setting remains until the parameter is set to another option.

Response (VFD -> master station)

PKW1 PKW2 PKW3 PKW4 CW PZD2 PZD3 PZD12		PKW1	PKW2	PKW3	PKW4	CW	PZD2	PZD3		PZD12
--	--	------	------	------	------	----	------	------	--	-------

Example 2: Writing process data to a VFD device

In this example, PZD3 is set to "2: PID reference" through the VFD parameter P15.03. The parameter specified in each request frame is updated with the information contained in PZD3 until another parameter is specified.

Request (master station -> VFD)

	PK	W1	PK	W2	PK	W3	PK	W4	C	W	ΡZ	D2	ΡZ	D3	 PZ	012
Response	хх	00	00	 хх	хх											

Subsequently, the information contained in PZD3 is used as tractive force reference in each request frame until another parameter is specified.

Chapter 3 CANopen communication card

3.1 Overview

- Thanks for choosing ASTRAADA CANopen communication cards. This manual describes the function specifications, installation, basic operation and settings, and information about the network protocol. To ensure that you install and operate the product properly, read this manual and the communication protocol section in the VFD operation manual carefully before you use the product.
- This manual only describes how to operate the CANopen communication card and the related commands but does not provide details about the CANopen protocol. For more information about the CANopen protocol, read the related specialized articles or books.
- This communication card is defined as a CANopen slave station communication card and is used on a VFD that supports CANopen communication.
- 4. The CANopen communication of this communication card supports access to VFDs through process data objects (PDOs) and service data objects (SDOs). PDOs and SDOs are used to read the object dictionary defined by the manufacturer.

3.2 Features

- 1. Supported functions
 - Supports the CAN2.0A protocol.
 - Supports CANopen DS301.
- 2. Supported CANopen services
 - PDO: Supports four pairs of PDO services (PDO1 TX to PDO4 TX, and PDO1 RX to PDO4 RX), where the PDO1 pair is used to read and write parameters of a VFD, and the PDO2 to PDO4 pairs are used to control and obtain the actual parameter values of the VFD in real time.
 - SDO: SDO information adopts the "client/server" mode and is used to configure slave nodes and provide access to the object dictionary of each node.
 - Supports the emergency service.
 - Supports node protection (NMT Node Guarding).
 - Supports heartbeat packets (Heartbeat Producer).
 - Supports network management (NMT).
 - Supports NMT module control.
 - Supports NMT broadcast addresses.
 - Supports NMT error control.
 - Supports boot-up.
 - Supports SYNC (1–240).
 - Supports asynchronous transmission of 254 and 255.
 - Supports disabled time.
 - Supports event timers.

- Supports manufacturer-defined object dictionary. You can use SDOs to control and obtain the actual parameter values of a VFD in real time.
- 3. Non-supported CANopen services
 - Saves object dictionary parameters at power outage
 - > Time stamp service
- 4. Supported CANopen addresses and baud rates

Table 3-1	Supported	addresses	and	baud r	ates

Item	Supported specification
Address	1–127 (decimal)
	1000 kbps
	800 kbps
	500 kbps
Baud rate	250 kbps
Bauurate	125 kbps
	100 kbps
	50 kbps
	20 kbps

Note: To enable the CANopen functions (except the CANopen communication timeout fault time and baud rate), you need only to select the related PROFIBUS channels. If modification is made on the VFD operation manual, the operation is subject to the CANopen channel, without prior notice in this manual.

3.3 Electrical wiring

Use shielding wires in the bus cable, if possible. It is recommended that you connect the shielding wire to the CANG terminal of the VFD. When the communication card functions as the terminal slave, it is recommended that you switch on the terminal resistor. Figure 3-1 shows the electrical wiring.

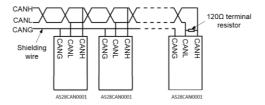


Figure 3-1 Electrical wiring diagram

3.4 Communication

3.4.1 Packet format

CAN2.0A packets are used to transmit data between the master station and bus nodes through data frames.

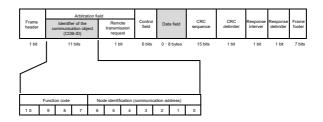


Figure 3-2 Packet structure

Communication object	Function code (binary)	COB-ID (hexadecimal)
NMT	0	0x00
SYNC	1	0x80
EMERGENCY	1	0x81-0xFF
PDO1 Tx	11	0x181-0x1FF
PDO1 Rx	100	0x201-0x27F
PDO2 Tx	101	0x281-0x2FF
PDO2 Rx	110	0x301-0x37F
PDO3 Tx	111	0x381-0x3FF
PDO3 Rx	1000	0x401-0x47F
PDO4 Tx	1001	0x481-0x4FF
PDO4 Rx	1010	0x501-0x57F
SDO Tx	1011	0x581-0x5FF
SDO Rx	1100	0x601-0x67F
Node protection	1110	0x701-0x77F

COB-IDs vary according to communication address, but for one command, the COB-IDs are within a certain range.

Note: The commands described in this manual are all data frames if it is not specified that they are remote frames.

3.4.2 CANopen state transition

The start sequence defined in the CANopen communication protocol is supported. Figure 3-3 shows the NMT state transition diagram.

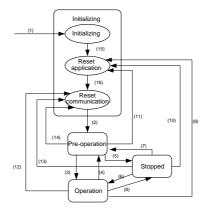


Figure 3-3 NMT state diagram

State transition	Required triggering event
(1)	Automatic initialization after power-on
(2)	Automatic change after initialization
(3), (6)	Command of the NMT master station for starting a
(3), (0)	remote node
(4), (7)	Command of the NMT master station for entering
(4), (7)	the pre-operation state
(5), (8)	Command of the NMT master station for entering
(5), (6)	the stopped state
(9), (10), (11)	Command of the NMT master station for resetting a
(9), (10), (11)	remote node
(12), (13), (14)	Command of the NMT master station for resetting a
(12), (13), (14)	remote node communication parameter

Different services are supported in different states, as described in Table 3-3.

Table 3-3 Services supported in various NMT states

Service	Pre-operation state	Operation state	Stopped state
PDOs	No	Yes	No
SDOs	Yes	Yes	No
SYNC packets	Yes	Yes	No
Emergency packets	Yes	Yes	No
Network management	Yes	Yes	No
Error control	Yes	Yes	Yes

3.4.3 Management service command (NMT)

This function is used by the master station to control the NMT states of slave station nodes.

Command

Master station -> slave station

COB-ID	Byte0	Byte1
0x000	Command specifier	Node-ID (Node ID)
	(CS)	

Description

In this command, the COB-ID is 0×00. If Node-ID is set to 0, the command is broadcast to all CANopen slave stations, and each slave station must execute the NMT command. Table 3-4 describes the function of each CS.

Table 3-4 Function of each CS

NMT CS	NMT service (control action)
0x01	Starts a slave station device.
0x02	Stops a slave station device.
0x80	Enables a slave station to enter the pre-operation
	state.
0x81	Resets a slave station.
0x82	Resets communication of a node.

Example

For example, the command to enable EC-TX105, whose node ID is 3, to enter the pre-operation state is described as follow.

COB-ID	Byte0	Byte1
0x000	0x80	0x03

For another example, the command to start all EC-TX105 nodes on the CANopen network is described as follows.

COB-ID	Byte0	Byte1
0x000	0x01	0x00

3.4.4 Node protection (NMT Node Guarding)

By using the node protection service, the NMT master node can detect the current state of each node.

Command

Request: Master station (remote frame) -> slave station

COB-ID	No data
0x700 + Node-ID	

Response: Slave station -> master station

COB-ID	Byte0 (state value)
0x700 + Node-ID	Bit 7: Triggering bit; Bits 0 to 6: State

Description

The most significant bit (MSB) bit 7 of Byte0 (state value) in the response command is the triggering bit, that is, the value of bit 7 is alternated between 0 and 1 each time when the slave station transmits a response frame to distinguish frames. Bits 0 to 6 indicate the state of the slave station. Table 3-5 describes the state values and their corresponding state.

State value (Byte0: Bits 0–6)	State
0x00	Initializing
0x04	Stopped
0x05	Operation
0x7F	Pre-operational

Table 3-5 State values and their corresponding states

Example

For example, the command for the master station to detect the state of slave station 3.

Master station (remote frame) -> slave station

COB-ID	No data
0x703	/

After receiving the node protection command transmitted by the master station, the slave station transmits the following command response to the master station.

COB-ID	Byte0 (state value)
0x703	0x85

In the command, bit 7 of Byte0 is 1, and the state value is 0×05 , indicating that slave station 3 is in the operation state. If receiving another node protection command, the slave station transmits a command frame in which the state value is 0×05 to the master station, and the value of bit 7 is alternated to 0.

3.4.5 Heartbeat packet (Heartbeat Producer)

In some cases, the master station requires that a slave station automatically transmits a frame of heartbeat packets at an interval, so that it can learn the state of the slave station in real time. The interval parameter (data length: 16 bits; unit: ms) is defined in the object dictionary 0x1017. If the interval is set to 0, the slave station does not transmit heartbeat packets. For this CANopen communication card, the interval is set to 0 by default.

Command

Slave station -> master station

COB-ID	Byte0

0x700 + Node-ID State value

Description

The heartbeat packets are in the same format with the node protection response frames. The difference between them is that no triggering bit alternation is performed for heartbeat packets (the triggering bit is always 0). Table 3-5 describes the state values.

• Example

For example, if slave station 3 is in the operation state and the interval parameter in 0x1017 is set to 100, slave station 3 transmits a frame of heartbeat packets every 100 ms.

COB-ID	Byte0
0x703	0x05

SDOs can be used to disable heartbeat packets, transmitting 2B 17 10 00 00 00 00 00 (setting the interval to 0).

Note: On the communication card, node protection and heartbeat packets cannot be used simultaneously.

3.4.6 Start packet (NMT Boot-up)

After being initialized (booted up), the communication card transmits a start packet.

• Command

Slave station -> master station

COB-ID	Byte0
0x700 +Node-ID	0x00

Example

For example, after being initialized, the communication card whose node ID is 3 transmits the following start packet.

COB-ID	Byte0
0x703	0x00

3.4.7 Synchronous packet object (SYNC)

Generally, SYNC signals are transmitted by the CANopen master station cyclically. A SYNC signal does not contain any data and is used mainly to request PDO Tx of a slave station node of the synchronous transmission type. 0x1005 in the object dictionary defines COB-IDs of the objects that receive synchronous packets, and they are set to 0x80 in the CANopen pre-defined connection set. For PDO Tx, the transmission types of 1 to 240 indicate synchronous transmission.

Command

Master station -> slave station

COB-ID	No data
0x80	/

3.4.8 Emergency packet object (EMCY)

This packet is transmitted when an internal error occurs on the communication card or VFD, or an error is deleted.

Command

Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x80 +	Emer error	gency code	Error		VF) error co	ode	
Node-ID	LSB	MSB	register	bit7-0	bit15-8	bit23- 16	bit31- 24	bit39- 32

Description

An emergency error code is two bytes. Byte0 is the least significant byte (LSB), and Byte1 is the most significant byte (MSB). A VFD error code is five bytes. Byte3 is the LSB, and Byte7 is the MSB.

An emergency error code indicates the type of the current error, as described in Table 3-6. The error register stores the type of the current error. You can determine the error type indicated by the current emergency packet according to the value stored in the register.

Table 3-7 describes the indication of the bits of the error register. For information about the VFD error codes, see the VFD operation manual. The function code P07.27 in Appendix B describes the error codes of Astraada DRV-28 VFD.

Emergency error code (hex)	Code function description
00xx	Error reset or no error
10xx	Generic error
20xx	Current
21xx	Current error on the, device input side
22xx	Current error inside the device
23xx	Current error on the device output side
30xx	Voltage error
31xx	Mains voltage
32xx	Voltage inside the device
33xx	Output voltage
40xx	Temperature
41xx	Ambient temperature
42xx	Device temperature
50xx	Device hardware
60xx	Device software
61xx	Internal software
62xx	User software
63xx	Data set

Emergency error code (hex)	Code function description		
70xx	Additional modules		
80xx	Monitoring		
81xx	Communication error		
8110	CAN overrun		
8120	Error passive		
8130	Life guard Error or heartbeat error		
8140	Recovered from Bus-Off		
82xx	Protocol error		
8210	PDO not processed due to length error		
8220	Length exceeded		
90xx	External error		
F0xx	Additional functions		
FFxx	Device specific		

Table 3-7 Error register bits

Error register bit	Error type
0	Generic error or no error
1	Current error
2	Voltage error
3	Temperature error
4	Communication error
5	Device description error
6	Reserved (=0)
7	Manufacturer-defined error

• Example

For example, if the "inverter unit phase U protection (OUT1)" fault occurs on the Astraada DRV-28 VFD whose node ID is 3, and the fault type is 1 (that is, the VFD error code is 1), the communication card transmits the following emergency packet.

COB-	Emer error	gency code	Error register	r		VFD error code				
ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		
0x83	0x00	0x30	0x04	0x01	0x00	0x00	0x00	0x00		

As you can see in the command, the emergency error code is 0x3000, indicating a voltage error. The error register is 0x04, that is, the second bit is "1", indicating a voltage error. The device error code is 0x0000000001. See the Astraada DRV-28 VFD operation manual, and you can find that the error code 1 indicates the "inverter unit phase U protection (OUT1)" fault.

After the fault is reset, the communication card transmits the following emergency packet to notify the

master station that the slave station is no longer faulty.

COB-		gency code	Error register	VFI		D error code			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
0x83	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	

3.4.9 Service data object (SDO)

SDOs are mainly used to transmit non-time key data. By using SDOs, the master station can read data from and write data to the object dictionary of a device.

• Command

Request: master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x600+NodeID	Request	Object	t index			Respon	se data	
	code	LSB M	MSB	Subindex	1.1.7 O	bit15-8	bit23-	bit31-
	coue	LJD	IVISD		DIL7-0	01112-0	16	24

Response: Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x580+NodeID	Respons	Object	: index			Respon	se data	
	e code	LSB	MSB	Subindex	hi+7 0	bit15-8	bit23-	bit31-
	e coue	LJD	IVISD		DIL7-0	0112-0	16	24

• Description

An object index is two bytes. Byte1 is the LSB, and Byte2 is the MSB. For information about the indexes and subindexes, see the object dictionary in the appendix. Request codes include request codes for reading and those for writing.

Request codes for writing vary according to the character length of items in the object dictionary, and the request code for reading are 0×40. See

Table 3-8.

Response codes indicating successful reading vary according to the character length of items in the object dictionary, and the response code indicating successful writing are 0×60. The response codes indicating reading failure and writing failure are both 0x80. See

Table 3-9.

Request	Request	Command	Requested data					
code type	code	description	Byte4	Byte5	Byte6	Byte7		
Write	0x23	Writes 4-byte data	bit7-0	bit15-8	bit23-16	bit31-24		
	0x2B	Writes 2-byte	bit7-0	bit15-8	-	-		

Table 3-8 SDO request codes and requested data

Request	Request	Command	Requested data					
code type	code	description	Byte4	Byte5	Byte6	Byte7		
		data						
	0x2F	Writes 1-byte data	bit7-0	-	-	-		
Read	0x40	Reads data	-	-	-	-		

Table 3-9 SDO response codes and response data

Response	Response	Command	Response data					
code type	code	description	Byte4	Byte5	Byte6	Byte7		
	0x43	Reads 4-byte data	bit7-0	bit15-8	bit23- 16	bit31- 24		
Read	0x4B Reads 2-byte data		bit7-0	bit15-8	-	-		
	0x4F	Reads 1-byte data	bit7-0	-	-	-		
Write	0x60	Writing succeeds	-	-	-	-		
		Pooding /writing	In	iterruptior	n error coo	de		
Read/write	0x80	Reading/writing fails	bit7-0	bit15-8	bit23- 16	bit31- 24		

Note: The symbol "-" in

Table 3-8 and

Table 3-9 indicates that the byte is reserved and provides no function.

Table 3-10 describes the interruption error codes.

Interruption code	Code function description
0503 0000	Triggering bit not alternated
0504 0000	SDO protocol times out
0504 0001	Invalid or unknown client/server
0504 0002	Invalid block size
0504 0003	Invalid sequence number
0504 0004	CRC error
0504 0005	Memory overflow
0601 0000	No access to the object
0601 0001	Attempts to read a write-only object
0601 0002	Attempts to write information to a read-only object
0602 0000	Object cannot be found in the object dictionary
0604 0041	Object cannot be mapped to PDO
0604 0042	Number and length of the object to be mapped exceeds the PDO length
0604 0043	Common parameter incompatibility
0604 0047	Common internal incompatibility of the device
0606 0000	Object access failure caused by hardware error
0607 0010	Data type not matched; service parameter length not matched
0609 0011	Subindex cannot be found in the object dictionary

Table 3-10 Interruption error codes

Interruption code	Code function description
0609 0030	Parameter value range exceeded
0609 0031	Written parameter value too large
0609 0032	Written parameter value too small
0609 0036	Max. value less than Min. value
0800 0000	Common error
0800 0020	Data failed to be transmitted or stored in the application
0800 0021	Data failed to be transmitted or stored in the application due to device control
0800 0022	Data failed to be transmitted or stored in the application due to the current state of the device
0800 0023	Error occurs dynamically on the object dictionary or object dictionary cannot be found

• Example

For example, slave station 3 reads data from and writes data to the object whose index is 0x1801 and subindex is 03. (The object whose index is 0x1801 and subindex is 03 indicates the disabled time of PDO2 Tx. For more information, see Appendix A.)

Write operation example: To modify the disabled time of PDO2 Tx to 1000 ms, the master station transmits the following write operation command.

COB-ID	Request code	Object index		Subinde x	Requested data				
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
0x603	0x2B	0x01	0x18	0x03	0xe8	0x03	0x00	0x00	

After receiving the command transmitted by the master station, the slave station transmits the following command response if the modification is successful.

COB-ID	Response code	Object index Byte1 Byte2		Subinde x	Response data			
	Byte0			Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x60	0x01	0x18	0x03	0x00	0x00	0x00	0x00

Read operation example: To read the disabled time of PDO2 Tx, the master station transmits the following read operation command.

	Request	Object	index	Subinde	Requested data			
COB-ID	code	object macx		х	hequested unta			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x40	0x01	0x18	0x03	0x00	0x00	0x00	0x00

After receiving the command transmitted by the master station, the slave station transmits the following command response if the current disabled time of PDO2 Tx is 1000 ms.

COB-ID Respons Ob	ject index Subindex	Response data
-------------------	---------------------	---------------

	e code							
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x43	0x01	0x18	0x03	0xe8	0x03	0x00	0x00

Read/write error example: The master station transmits the following read operation command to read an object (whose index is 0x6000 and subindex is 0x00) that cannot be found.

COB-ID	Request code	Object index		Subindex		Requested data		
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x40	0x00	0x60	0x00	0x00	0x00	0x00	0x00

The object cannot be found, and therefore the slave station transmits the following read/write error command response.

COB-ID	Respons e code	Object	index	Subinde x	Response data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x80	0x00	0x60	0x00	0x00	0x00	0x02	0x06

The error code in the response is 0x06020000, indicating that "Object cannot be found in the object dictionary".

3.5 Process data object (PDO)

The communication card provides four PDO Tx commands (whose indexes are 0x1800 to 0x1803) and four PDO Rx commands (whose indexes are 0x1400 to 0x1403). PDO Rx is a PDO command transmitted by the master station to a slave station, that is, it is a master station command. PDO Tx is a PDO command transmitted by a slave station to the master station.

The CW, SW, setting, and return value of each PDO of the communication card are all defined with a "manufacturer-defined object dictionary". In this way, the process data of a VFD can be monitored not only through PDOs but also through SDOs. For more information, see the next chapter. Each PDO command is labeled with "manufacturer-defined object dictionary" in the format of 0xXXXX.HH, where XXXX indicates an index, HH indicates a subindex, and both of them are hexadecimal.

3.5.1 Triggering mode of PDO Tx

Each PDO Tx is defined with a transmission type, disabled time, and event timer. The corresponding subindex of the transmission type is 0x02, that of the disabled time is 0x03, and that of the event timer is 0x05. Therefore, the object dictionary index corresponding to PDO2 Tx is 0x1801, and the subindex is 0x02. The same principle applies to other PDO Tx commands. For more information, see Appendix A.

Synchronous triggering: When the transmission type is set to 1 to 240, PDO Tx is synchronous transmission. For example, if you set the transmission type of PDO2 Tx to n ($1 \le n \le 240$), a slave station transmits one PDO2 Tx command every time after it receives n synchronous packet objects. The same principle applies to other PDO Tx commands.

Asynchronous triggering (254): When the value of the event timer is not zero, a slave station transmits PDO Tx commands periodically. For example, if the event timer of PDO2 Tx is set to 200, the slave station transmits a PDO2 Tx command at the interval of 200 ms. When the value of the event timer is zero, the slave station transmits a PDO Tx command once the corresponding PDO Tx data changes, and the transmission interval is subject to the disabled time. A PDO Tx packet can be transmitted only once in the disabled time, which effectively reduces the load of the bus. When the disabled time is set to a period shorter than 50 ms, 50 ms is used as the disabled time.

Asynchronous triggering (255): When the value of the event timer is not zero, a slave station transmits PDO Tx commands periodically. For example, if the event timer of PDO2 Tx is set to 200, the slave station transmits a PDO2 Tx command at the interval of 200 ms. When the value of the event timer is zero, the slave station transmits a PDO Tx command once a corresponding PDO Rx command is received. For example, after receiving a PDO2 Rx command, the slave station transmits a PDO2 Tx command.

Triggering mode	Transmission type (decimal)	Event triggering	PDO1 TX	PDO2 TX	PDO3 TX	PDO4 TX
Synchronou s	1–240	/	Non- supported	Support ed	Support ed	Support ed
Asynchrono us	254	Event timer	Non- supported	Support ed	Support ed	Support ed
		Disabled time	Non- supported	Support ed	Support ed	Support ed
		Event timer=0	Supported	Support ed	Support ed	Support ed
		Event timer=0	Non- supported	Support ed	Support ed	Support ed

Table 3-11 Triggering modes supported by the communication card

Table 3-12 Default PDO Tx settings of the communication card

	PDO1 TX	PDO2 TX	PDO3 TX	PDO4 TX
Transmission type	255	254	254	254
Event timer (ms)	0	0	0	0
Disabled time (ms)	500	500	500	500

For how to set the triggering type of PDO Tx, see the description of SDO commands.

3.5.2 PDO1

PDO1 is used to read and write parameters of the VFD. The function of PDO1 is similar to that of an SDO. SDOs are used to read and write objects of an object dictionary, and PDO1 is used to read and write parameters of the VFD.

Note: PDO1 Tx support only the transmission type of asynchronous transmission 255. Do not set it to other transmission types, and do not try to set the event timer to periodically transmits PDO1 Tx to the master

station.

3.5.2.1 PDO1 Rx

Command

Request: Master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5
0x200+NODE-ID	Request code		Parameter address		Requested data	
	0x2100.00		0x2100.01		0x210	00.02

Description

A request code is two bytes. Byte0 is the LSB, and Byte1 is the MSB. The manufacturer defines the index 0x2100 and subindex 0x00 for the request codes. Table 3-13 describes the functions of the request codes.

Request code	Function
0	No task
1	Reading the value of a parameter
2	Modifying a parameter value [modifying the value only on RAM]
4	Modifying a parameter value [modifying the value only on both RAM and EEPROM] (reserved)

Table	3-13	Rea	uest	codes

A parameter address is two bytes. Byte2 is the LSB, and Byte3 is the MSB. It indicates the address of the parameter to be read or modified.

Astraada DRV-28 series VFD function code address representation rules: The MSB is the hexadecimal form of the number before the dot mark, and LSB is that of the number behind the dot mark. Take P10.01 as an example, the number before the dot mark is 10, that is, the MSB of the parameter address is 0×0A; and the number behind the dot mark is 01, that is, the LSB is 0×01. Therefore, the function code address is 0×0A01.

Function code	Name	Detailed parameter description	Default value	Modify
P10.00	Simple PLC mode	0: Stops after running once 1: Keeps running in the final value after running once 2: Cyclic running	0	0
P10.01	Simple PLC memory selection	0: Not saving data at power outage 1: Saving data at power outage	0	0

Table 3-14 Astraada DRV-28 series VFD parameter addresses

VFD parameter address representation rules: You can see the function code in the function parameter list in the VFD operation manual. The hexadecimal form of the value corresponding to the function code is the parameter address. For example, the value corresponding to the function code P13.14 is 1314, and therefore the parameter address of the function code is 0×522 (that is, 1314 in the decimal form).

A piece of requested data is two bytes. Byte4 is the LSB, and Byte5 is the MSB. It indicates the data to be modified. When the command is transmitted for reading data, the requested data is not used.

Note: The data domain of PDO1 Rx must be six bytes. Otherwise, the communication card reports an emergency packet.

3.5.2.2 PDO1 Tx

Command

Response: Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x180+NODEID	Resp co		Error code		Response data		0x00	0x00
	0x200	00.00	0.00 0x2000.01		0x2000.02		-	-

Description

Byte6 and Byte7 are reserved and both are 0x00.

A response code is two bytes. Byte0 is the LSB, and Byte1 is the MSB. Table 3-15 describes the functions of the response codes.

Response code	Function				
0 No response					
1	Reading or writing succeeds				
3	A reading or writing error occurs. Table 3-16 describes the error codes.				

A piece of response data is four bytes. Byte4 is the LSB, and Byte7 is the MSB. When a write command is responded, the response data is the data to be modified; and when a read command is responded, the response data is the data to be read.

An error code is two bytes. Byte2 is the LSB, and Byte3 is the MSB. Error codes are valid only when the response code is 3. An error code indicates the reason why it fails to respond to PDO1 Rx. Table 3-16 describes the definitions of the error codes.

Table 3-16 Error codes

Code	Name	Definition						
00H	No error	/						
01H	Invalid command	 The operation corresponding to the request code is not allowed to be executed. The possible causes are as follows: The function code is applicable only on new devices and is not implemented on this device. The slave station is in the faulty state when processing this request. For a slave device, the data address in the request of the master station is not allowed. In particular, the combination of the register address and the number of the to-be-transmitted bytes is invalid. 						
02H	Invalid data address							
03H	Invalid data value	The received data domain contains a value that is not allowed. The value indicates the error of the						

Code	Name	Definition						
		remaining structure in the combined request.						
		Note: It does not mean that the data item submitted						
		for storage in the register includes a value unexpected by the program.						
04H	Operation failure	The parameter is set to an invalid value in the write operation. For example, a function input terminal cannot be set repeatedly.						
05H	Password error	The password entered in the password verification address is different from that set by the user.						
06H	Data frame error	The length of the data frame transmitted by the upper computer is incorrect, or in the RTU format, the value of the CRC check bit is inconsistent with the CRC value calculated by the lower computer.						
07H	Parameter read-	The parameter to be modified in the write operation						
078	only	of the master station is a read-only parameter.						
	Parameter cannot	The parameter to be modified in the write operation						
08H	be modified in	of the master station cannot be modified during the						
	running	running of the VFD.						
		A user password is set, and the master station does						
09H	Password	not provide the password to unlock the system when						
0.911	protection	performing a read or write operation. The error of						
		system locked is reported.						

• Example of PDO1

The VFD is a Astraada DRV-28 series VFD, and the slave station address is 3. Assume that you want to set the function code P15.13 of the VFD to 1.

Command analysis: The parameter address of P15.13 is 0×0F0D. According to the protocol, the request code of PDO1 Rx is 0×02, the parameter address is 0x0F0D, and the requested data is 0x01, and therefore PDO1 Rx transmitted by the master station is as follows.

	COB-ID	Request code		Paramete	r address	Requested data		
		Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	
	0x203	0x02	0x00	0x0D	0x0F	0x01	0x00	

If the VFD parameter is successfully modified, the following PDO1 Tx command is returned.

COB- ID	Response code		Error code		Response data		-	
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x183	0x01	0x00	0x00	0x00	0x01	0x00	0x00	0x00

3.5.3 PDO2 Rx

PDO2 Rx is used to modify CWs and real-time process data (setting 1, setting 2, and setting 3) of a VFD. A CW is used to control the start and stop of a VFD, and settings are used to control the real-time running values of the VFD, such as set frequency.

• Command

Master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x300+NODEID	CW		Setting 1		Setting 2		Setting 3	
	0x2101.00		0x2100.03		0x2100.04		0x210	00.05

Description

A CW is two bytes. Byte0 is the LSB, and Byte1 is the MSB. Table 3-17 describes Astraada DRV-28 series VFD CWs.

Bit	Name	Value	Description
		1	Forward running
		2	Reverse running
		3	Forward jogging
0-7	Communication-based	4	Reverse jogging
0-7	control command	5	Stop
		6	Coast to stop (emergency stop)
		7	Fault reset
		8	Stop jogging
8	Enable write	1	Enable writing (mainly through PKW1 to
0		Т	PKW4)
9–10	Motor group setting	00	Motor 1
5-10	wotor group setting	01	Motor 2
11	Control mode	1	Enable torque/speed control switching
11	switching	0	Disable switching
12	Reset power	1	Enable
12	consumption to zero	0	Disable
13	Pre-excitation	1	Enable
15	Pre-excitation	0	Disable
14	DC braking	1	Enable
14	DC DI AKITIK	0	Disable
15	Heartbeat reference	1	Enable
13		0	Disable

Table 3-17 Astraada DRV-28 series VFD CWs

The function of each setting can be set through the corresponding function code of the VFD. The setting method is the same as that for "received PZD" in PROFIBUS communication. For details, see the VFD operation manual. Setting 1, setting 2, and setting 3 correspond to received PZD2, received PZD3, and received PZD4, respectively. To set the function of setting 1 to "Set frequency", you need only to set "Received PZD2" to "1: Set frequency". The same principle applies to other settings. When multiple settings are enabled, the failure to set one setting (for example, the set value exceeds the setting range) does not affect the setting of other settings.

Example

Assume that the VFD is a Astraada DRV-28 series VFD, the slave station address is 3, you control the running of the VFD through CANopen communication, and you want to set the running frequency to 50 Hz through

CANopen communication.

Command analysis: You need to set the VFD start mode and frequency reference mode to CANopen communication (P00.01=2, P00.02=1, P00.06=9) first. In this example, use Setting 2 to set the running frequency (P15.03=1, that is, set Received PZD3 to "1: Set frequency").

When a CW is 0×01 , it indicates that the VFD is to be run. To set the frequency to 50 Hz, you need to set Setting 2 to 5000, that is, 0x1388.

The PDO2 Rx command transmitted by the master station is as follows.

Ĩ	COB-	cw		Setting 1		Sett	ing 2	Setting 3	
	ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
I	0x303	0x01	0x00	0x00	0x00	0x88	0x13	0x00	0x00

3.5.4 PDO2 Tx

PDO2 Tx is a command transmitted by a VFD to the master station. It contains a SW and real-time process data (Returned value 1, returned value 2, and returned value 3). A SW is used to notify of the state of the VFD, and returned values are used to transmit the real-time running values of VFD, such as running frequency.

The default transmission type of PDO2 Tx is 254, and therefore PDO2 Tx is transmitted once data corresponding to a SW or returned value changes.

• Command

Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
	SW		Returned value		Returned value		Returned value	
0x280+NODEID			1	L	2	2	Э	3
	0x200	01.00	0x200	00.03	0x200	00.04	0x200	0.05

Description

A SW is two bytes. Byte0 is the LSB, and Byte1 is the MSB.

Table 3-18 describes the definitions of the Astraada DRV-28 series VFD SWs. For VFD of other series, see the corresponding VFD operation manual.

Bit	Name	Value	Description
		1	In forward running
		2	In reverse running
0–7	Running state	3	Stopped
		4	Faulty
		5	POFF
8	Bus voltage	1	Ready to run
0	established	0	Not ready to run
9–10	9–10 Motor group		Motor 1

Table 3-18 Astraada DRV-28 series VFD SWs

Bit	Name	Value	Description		
	feedback	1	Motor 2		
11	Motor type feedback	1	Synchronous motor		
11	wotor type reeuback	0	Asynchronous motor		
12	Overload pre-alarm	ad pre-alarm 1 Overload pre-alarn			
12	feedback	0	No overload pre-alarm generated		
		0	Keypad-based control		
13-	Dun /stan mada	1	Terminal-based control		
14	Run/stop mode	2	Communication-based control		
		3	Reserved		
15	15 Heartbeat feedback		Heartbeat feedback		
13	Thear thear Teeuback	0	No heartbeat feedback		

The function of each returned value can be set through the corresponding function code of the VFD. The setting method is the same as that for "transmitted PZD" in PROFIBUS communication. For details, see the VFD operation manual. Returned value 1, returned value 2, and returned value 3 correspond to transmitted PZD2, transmitted PZD3, and transmitted PZD4, respectively. To set the function of returned value 1 to "Running frequency", you need only to set "Transmitted PZD2" to "1: Running frequency". The same principle applies to other returned values. Multiple returned values can be enabled simultaneously.

Example

Assume that the VFD is a Astraada DRV-28 series VFD, the slave station address is 3, the VFD is running, and the running frequency is 50.00 Hz. Returned value 1 is set to "Running frequency", returned value 2 is set to "Output voltage", and returned value 3 is set to no function.

Command analysis: You need to set returned value 1 to the running frequency of the VFD (P15.13=1), returned value 2 to the output voltage of the VFD (P15.14=4), and returned value 3 to invalid (P15.15=0) first.

The VFD is running and the bus voltage has been established, and therefore the SW is 0x0101. The running frequency is 50.00 Hz, and therefore returned value 1 is 5000, that is, 0x1388. If the output voltage is 380 V, returned value 2 is 0x017C.

COB- ID	sw		Retu valu	rned ue 1	Retu valu		Returned value 3	
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x283	0x01	0x01	0x88	0x13	0x7C	0x01	0x00	0x00

The PDO2 Tx command transmitted by the VFD is as follows.

3.5.5 PDO3 Rx and PDO4 Rx

PDO3 Rx and PDO4 Rx are used to modify the real-time process data of a VFD, such as set frequency.

• PDO3 Rx command

Master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
0x400+NODEID	Setting 4		Setting 5		Setting 6		Setting 7		
0,400 NODLID	0x210	0x2100.06		0x2100.07		0x2100.08		0x2100.09	

• PDO4 Rx command

Master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x500+NODEID	Setting 8		Setting 9		Setting 10		Setting 11	
	0x2100.0a		0x2100.0b		0x2100.0c		0x2100.0d	

Description

The application methods for PDO3 Rx and PDO4 Rx are the same as that for PDO2 Rx. For the relationship between the settings and PZD in PROFIBUS communication, see

Table 3-19.

3.5.6 PDO3 Tx and PDO4 Tx

PDO3 Tx and PDO4 Tx are used by the VFD to transmit real-time process data to the master station, such as running frequency.

The default transmission type of PDO3 Tx and PDO4 Tx is 254, and therefore PDO3 Tx or PDO4 Tx is transmitted once data corresponding to a returned value in the same command changes.

• PDO3 Tx command

Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
	Returned value		Returned value		Returned value		Returned value	
0x380+NODEID	4		5		6		7	7
	0x200	00.06	0x2000.07		0x2000.08		0x2000.09	

• PDO4 Tx command

Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
	Returned value		Returned value		Returned value		Returned value	
0x480+NODEID	8		9		10		11	
	0x200	00.0a	0x2000.0b		0x2000.0c		0x2000.0d	

Description

The application methods for PDO3 Tx and PDO4 Tx are the same as that for PDO2 Tx. For the relationship between the returned values and PZD in PROFIBUS communication, see

Table 3-20.

3.6 Monitoring process data through SDO commands

The communication can use SDOs as well as PDOs to monitor the process data of a VFD. You can select a monitoring mode as required. You can monitor the VFD by using SDOs to read the manufacturer-defined object dictionary.

For the definition and application of the CWs, SWs, settings, and returned values in the manufacturerdefined object dictionary, see the PDO description section. For application of SDOs, see the SDO description section. Do not try to use SDOs to read and write VFD parameters.

Table 3-19 and

Table 3-20 describe the manufacturer-defined object dictionary.

Index	Subindex	Function	Access	Data	Corresponding	
(hexadecimal)	(hexadecimal)	Function	permission	length	to	
		Request				
	0	code (do not	RW	2 bytes	/	
		use it)				
		Parameter				
	1	address (do	RW	2 bytes	/	
		not use it)				
		Requested				
	2	data (do not	RW	2 bytes	/	
		use it)				
	3	Setting 1	RW	2 bytes	Received PZD2	
2100	4	Setting 2	RW	2 bytes	Received PZD3	
2100	5	Setting 3	RW	2 bytes	Received PZD4	
	6	Setting 4	RW	2 bytes	Received PZD5	
	7	Setting 5	RW	2 bytes	Received PZD6	
	8	Setting 6	RW	2 bytes	Received PZD7	
	9	Setting 7	RW	2 bytes	Received PZD8	
	А	Setting 8	RW	2 bytes	Received PZD9	
	В	Setting 9	RW	2 bytes	Received PZD10	
	С	Setting 10	RW	2 bytes	Received PZD11	
	D	Setting 11	RW	2 bytes	Received PZD12	
	E	Reserved	RW	2 bytes	/	
	F	Reserved	RW	2 bytes	/	
2101	0	CW	RW	2 bytes	/	

Table 3-19 Objects with the control function in the manufacturer-defined object dictionary

Index (hexadecimal)	Subindex (hexadecimal)	Function	Access permission	Data length	Corresponding to
	0	Response code (do not use it)	RO	2 bytes	/
	1	Error code (do not use it)	RO	2 bytes	/
	2	Response data (do not use it)	RO	2 bytes	/
	3	Returned value 1	RO	2 bytes	Transmitted PZD2
	4	Returned value 2	RO	2 bytes	Transmitted PZD3
	5	Returned value 3	RO	2 bytes	Transmitted PZD4
	6	Returned value 4	RO	2 bytes	Transmitted PZD5
	7	Returned value 5	RO	2 bytes	Transmitted PZD6
2000	8	Returned value 6	RO	2 bytes	Transmitted PZD7
	9	Returned value 7	RO	2 bytes	Transmitted PZD8
	А	Returned value 8	RO	2 bytes	Transmitted PZD9
	В	Returned value 9	RO	2 bytes	Transmitted PZD10
	С	Returned value 10	RO	2 bytes	Transmitted PZD11
	D	Returned value 11	RO	2 bytes	Transmitted PZD12
	E	Reserved	RO	2 bytes	/
	F	Reserved	RO	2 bytes	/
2001	0	SW	RO	2 bytes	/

Table 3-20 Objects with the monitoring function in the manufacturer-defined object dictionary

Examples

Example 1: To instruct the VFD whose address is 3 to run forwardly, the master station transmits the following SDO command.

COB-ID	Request code	Object	index	Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x2B	0x01	0x21	0x00	0x01	0x00	0x00	0x00

Example 2: Assume that the address of the VFD slave station is 3, and the function of setting 1 is defined as "Set frequency". To set the frequency to 50.00 Hz (that is, setting 1=0x1388), the master station transmits the following SDO command.

COB-ID	Request code	Object	t index	Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x2B	0x00	0x21	0x03	0x88	0x13	0x00	0x00

Example 3: To read the running state of the VFD whose address is 3, the master station transmits the following SDO command.

COB-ID	Request code	Object	t index	Subindex	Requested data			
	Byte0		Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x40	0x01	0x20	0x00	0x00	0x00	0x00	0x00

If the VFD is running forward, the following SDO command is returned to the master station.

COB-ID	Request code	Object	index	Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x4B	0x01	0x20	0x00	0x01	0x01	0x00	0x00

Example 4: Assume that the address of the VFD slave station is 3, and the function of setting 1 is defined as "Set frequency". To set the frequency to 50.00 Hz (that is, setting 1=0x1388), the master station transmits the following SDO command.

COB-ID	Request code	Object	tindex	Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x40	0x00	0x20	0x03	0x00	0x00	0x00	0x00

If the running frequency of the VFD is 50.00 Hz, the following SDO command is returned to the master station.

COB-ID	Request code	Object	t index	Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x4B	0x00	0x20	0x03	0x88	0x13	0x00	0x00

3.7 Baud rate and communication address setting

3.7.1 Baud rate setting

After setting the CANopen baud rate and communication address, you need to restart the VFD to enable the settings to take effect.

The CANopen baud rate is set through the corresponding VFD function parameter. For description of function code addresses, see the VFD operation manual. Table 3-21 describes the values of the function parameter and their corresponding baud rates.

Function parameter value	Baud rate (bit/s)
0	1000 k
1	800 k
2	500 k
3	250 k
4	125 k
5	100 k
6	50 k
7	20 k

Table 3-21 Baud rate setting

3.7.2 Communication address setting

The CANopen communication address is set through the function parameter P15.01.

3.7.3 Function codes related to transmitted and received PZD

Table 3-22 Received PZD

Function code	Word	Value range	Default value
P15.02	Received PZD2	0: Invalid 1: Set frequency (0–Fmax, unit: 0.01 Hz)	0
P15.03		 2: PID reference (0–1000, in which 1000 corresponds to 100.0%) 	0
P15.04	Received PZD4	3: PID feedback (0–1000, in which 1000 corresponds to 100.0%)	0
P15.05	Received PZD5	4: Torque setting (-3000-+3000, in which 1000 corresponds to 100.0% of the rated current of the	0
P15.06	PZD6	motor) 5: Setting of the upper limit of forward running	0
P15.07	Received	frequency (0–Fmax, unit: 0.01 Hz)	0

Function code	Word	Value range	Default value
	PZD7	6: Setting of the upper limit of reverse running	
P15.08	Received PZD8	frequency (0–Fmax, unit: 0.01 Hz) 7: Upper limit of the electromotive torque (0–3000,	0
P15.09	Received PZD9	in which 1000 corresponds to 100.0% of the rated current of the motor)	0
P15.10	Received PZD10	8: Upper limit of the brake torque (0–2000, in which 1000 corresponds to 100.0% of the rated current of	0
P15.11	Received PZD11	the motor) 9: Virtual input terminal command, 0x000–0x3FF	0
P15.12	Received PZD12	 (corresponding to S8, S7, S6, S5, HDIB, HDIA, S4, S3, S2, and S1 in sequence) 10: Virtual output terminal command, 0x00–0x0F (corresponding to RO2, RO1, HDO, and Y1 in sequence) 11: Voltage setting (for V/F separation) (0–1000, in which 1000 corresponds to 100.0% of the rated voltage of the motor) 12: AO output setting 1 (-1000–+1000, in which 1000 corresponds to 100.0%) 13: AO output setting 2 (-1000–+1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed number) 15: LSB of position reference (unsigned number) 16: MSB of position feedback (signed number) 17: LSB of position feedback (signed number) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 	0

Table 3-23 Transmitted PZD

Function code	Word	Value range	Default value
P15.13	Transmitted PZD2	0: Invalid	0
P15.14	Transmitted PZD3	1: Running frequency (×100, Hz)	0
P15.15		2: Set frequency (×100, Hz)	0
P15.16	Transmitted PZD5	3: Bus voltage (×10, V)	0
P15.17		4: Output voltage (×1, V)	0
P15.18	manshintled 12D7	5: Output current (×10, A)	0
P15.19	Transmitted PZD8	6: Actual output torque (×10, %)	0
P15.20	Transmitted PZD9	7: Actual output power (×10, %)	0
P15.21	Transmitted PZD10	8: Rotating speed of the running (×1, RPM)	0

Function code	Word	Value range	Default value
P15.22	Transmitted PZD11	9: Linear speed of the running (×1, m/s)	0
P15.23	Transmitted PZD12	 10: Ramp frequency reference 11: Fault code 12: Al1 value (×100, V) 13: Al2 value (×100, V) 14: Al3 value (×100, V) 15: HDIA frequency (×100, kHz) 16: Terminal input state 17: Terminal output state 18: PID reference (×100, %) 19: PID feedback (×100, %) 20: Rated torque of the motor 21: MSB of position reference (signed number) 22: LSB of position reference (unsigned number) 23: MSB of position feedback (signed number) 24: LSB of position feedback (unsigned number) 25: State word 26: HDIB frequency value (×100, kHz) 	0

Chapter 4 PROFINET communication card

4.1 Overview

- Thanks for choosing ASTRAADA PROFINET communication cards. This manual describes the function specifications, installation, basic operation and settings, and information about the network protocol. To ensure that you install and operate the product properly, read this manual and the communication protocol section in the VFD operation manual carefully before you use the product.
- This manual only describes how to operate the PROFINET communication card and the related commands but does not provide details about the PROFINET protocol. For more information about the PROFINET protocol, read the related specialized articles or books.
- This communication card is defined as a PROFINET slave station communication card and is used on a VFD that supports PROFINET communication.
- 4. The communication card supports the linear network topology and star-shaped network topology.
- 5. The communication card supports 32 inputs/outputs to read and write process data, read state data, and read and write function parameters of a VFD.

4.2 Features

1. Supported functions

- Supports the PROFINET protocol, and supports PROFINET I/O devices
- > Provides two PROFINET I/O ports and supports the 100 M full-duplex operation
- Supports the linear network topology and star-shaped network topology.

2. Supported communication types

Standard Ethernet channels

Standard Ethernet channels are non-realtime communication channels that use the TCP/IP protocol, and are mainly used for device parameterization and configuration and to read diagnosis data.

Real-time (RT) communication channels

RT channels are optimized channels for real-time communication. They take precedence over TCP (UDP)/IP, which ensures that various stations on a network perform data transmission with high time requirements at a certain interval. The bus period may reach the precision of millisecond. These channels are used to transmit data such as process data and alarm data.

Isochronous real-time (IRT) communication channels

IRT channels are implemented through the built-in Switch-ASIC IRT chip. IRT communication can further shorten the processing time of the communication stack software, synchronizing data transmission of the program and device. The transmission delay is less than 1 ms, and the jitter is less than 1 μ s. The typical application is motion control.

3. Communication ports

Standard RJ45 ports are used in PROFINET communication. The communication card provides two RJ45 ports with no transmission direction defined, and therefore you can insert a cable into the port without regard to its direction. Figure 4-1 shows the ports, and Table 4-1 describes the functions of the ports.

Figure 4-1 Two standard RJ45 ports

Table 4-1 Standard RJ45 port pins

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

4. State indicators

The PROFINET communication card provides nine LED indicators to indicate its states.

Table 4-2 describes the state indicators.

Table	4-2	State	indicators
-------	-----	-------	------------

LED	Color	State	Description
LED1	Green		3.3 V power indicator
		On	Not connected through a network cable
LED2 (Bus state indicator)	Red	Blinking	Connected to the PROFINET controller through a network cable, but no communication established
		Off	Communication established with the PROFINET controller
LED3		On	PROFINET diagnosis enabled
(System fault indicator)	Red	Off	PROFINET diagnosis disabled
LED4		On	TPS-1 communication stack started
(Slave ready indicator)	Green	Blinking	TPS-1 waits for the initialization of MCU
indicatory		Off	TPS-1 communication stack not started
LED5			Defined by the manufacturer,
(Maintenance state	Green		depending on the characteristics
indicator)			of the device
LED6/7	Green	On	PROFINET communication card

LED	Color	State	Description		
(Network port state			connected to the PC/PLC through a		
indicator)			network cable		
		Off	PROFINET communication card		
		011	not connected to the PC/PLC		
LED8/9		On	PROFINET communication card		
(Network port		UII	communicating with the PC/PLC		
communication	Green		PROFINET communication card		
indicator)		Off	not communicating with the		
indicatory			PC/PLC		

4.3 Electrical wiring

PROFINET communication card provides standard RJ45 ports and supports the linear network topology and star-shaped network topology. Figure 4-2 and Figure 4-3 show the electrical wiring diagrams.

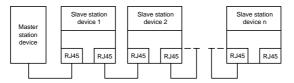
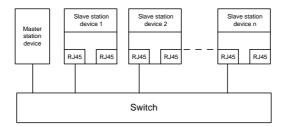
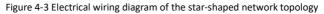




Figure 4-2 Electrical wiring diagram of the linear network topology

Note: For the star-shaped network topology, you need to use a PROFINET switch.

4.4 Communication

4.4.1 Packet format

Table 4-3 describes the structure of an RT frame (non-synchronous).

Data	Ethernet	VLAN	Ethernet	Frame	RT	Period	Data	Transmission	FCS
------	----------	------	----------	-------	----	--------	------	--------------	-----

header	type		type	identifier	user	counter	state	state	
					data				
		2			36-		1		4
	2 bytes		2 bytes	2 bytes	1440	2 bytes	1	1 byte	
		bytes			bytes		byte		bytes
	0x8100		0x8892						
	VLAN 1	flag					APDU	state	

Data header						
7-byte	1-byte synchronization	6-byte source	6-byte destination			
preamble	information	MAC address	MAC address			

Table 4-4 describes the structure of the IRT frame (synchronous).

	Data h	eader		Ethernet type	VLAN	Ethern et type	Frame identifi er	IRT user data	FCS
7-byte pream ble	1-byte synchro nization	6-byte source MAC address	6-byte destina tion MAC addres s	2 bytes	2 bytes	2 bytes	2 bytes	36– 1440 bytes	4 bytes

Table 4-4 Structure of an IRT frame

4.4.2 PROFINET I/O communication

The PROFINET communication card supports 16-word input/output. Figure 4-4 shows the packet format for transmitting data with a VFD.

	Parameter identification (PKW)					rocess d (PZD) Distributa	>
PKW1	PKW2	PKW3	PKW4			PZD3 PZD3	PZD12 PZD12

Figure 4-4 Packet structure

By using the 32 inputs/outputs, you can set the reference parameters of the VFD, monitor the state values, transmit control commands, monitor the running state, and read/write the function parameters of the VFD. For specific operations, see the following description.

Parameter zone:

PKW1—Parameter identification

PKW2—Array index number

PKW3—Parameter value 1

PKW4—Parameter value 2

Process data:

CW—Control word (transmitted from the master to a slave. For description, see

Table 4-5)

SW—State word (transmitted from a slave to the master. For description, see Table 4-7.)

PZD—Process data (defined by users)

(When the process data is output by the master to a slave, it is a reference value; and when the process data is input by a slave to the master, it is an actual value.)

PZD zone (process data zone): The PZD zone in a communication packet is designed for controlling and monitoring a VFD. The master and slave stations always process the received PZD with the highest priority. The processing of PZD takes priority over that of PKW, and the master and slave stations always transmit the latest valid data on the interfaces.

CWs and SWs

Using CWs is the basic method of the fieldbus system to control VFDs. A CW is transmitted by the fieldbus master station to a VFD device. In this case, the adapter module functions as a gateway. The VFD device responds to the bit code information of the CW and feeds state information back to the master through an SW.

Reference value: A VFD device may receive control information in multiple channels, including analog and digital input terminals, VFD control panel, and communication modules (such as RS485 and CH-PA01 adapter modules). To enable the control over VFD devices through PROFINET, you need to set the communication module as the controller of the VFD device.

Actual value: An actual value is a 16-bit word that includes information about VFD device operation. The monitoring function is defined through VFD parameters. The conversion scale of an integer transmitted as an actual value from the VFD device to the master depends on the set function. For more description, see the related VFD operation manual.

Note: A VFD device always checks the bytes of a CW and reference value.

Task packet (master station -> VFD)

CW: The first word in a PZD task packet is a VFD CW.

Table 4-5 describes Astraada DRV-28 series VFD CWs.

Bit	Name	Value	Description
		1	Forward running
	Communication-	2	Reverse running
0–7	based control	3	Forward jogging
	command	4	Reverse jogging
		5	Stop

Table 4-5 Astraada DRV-28 series VFD CWs

Bit	Name	Value	Description
		6	Coast to stop (emergency stop)
		7	Fault reset
		8	Stop jogging
8	Enable writing	1	Enable writing (mainly through PKW1 to
0	Enable writing	T	PKW4)
9–10	Motor group setting	00	Motor 1
9-10	wotor group setting	01	Motor 2
11	Control mode	1	Enable torque/speed control switching
11	switching	0	Disable switching
12	Reset power	1	Enable
12	consumption to zero	0	Disable
13	Pre-excitation	1	Enable
15	Pre-excitation	0	Disable
14	DC braking	1	Enable
14	DC DI akilig	0	Disable
15	Heartbeat reference	1	Enable
12	near wear reference	0	Disable

Reference value (REF): The second to twelfth words in a PZD task packet are the main settings. The main frequency settings are provided by the main setting signal source. Table 4-6 describes the settings of Astraada DRV-28 series VFD.

Function code	Word	Value range	Default value
P16.32	Received PZD2	0: Invalid 1: Set frequency (0–Fmax, unit: 0.01 Hz)	0
P16.33	Received PZD3	2: PID reference (0–1000, in which 1000 corresponds to 100.0%)	0
P16.34	Received PZD4	3: PID feedback (0–1000, in which 1000 corresponds to 100.0%)	0
P16.35	Received PZD5	4: Torque setting (-3000-+3000, in which 1000 corresponds to 100.0% of the rated current of the	0
P16.36	Received PZD6	motor) 5: Setting of the upper limit of forward running	0
P16.37	Received PZD7	frequency (0–Fmax, unit: 0.01 Hz) 6: Setting of the upper limit of reverse running	0
P16.38	Received PZD8	frequency (0–Fmax, unit: 0.01 Hz) 7: Upper limit of the electromotive torque (0–3000,	0
P16.39	Received PZD9	in which 1000 corresponds to 100.0% of the rated current of the motor)	0
P16.40	Received PZD10	8: Upper limit of the brake torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of	0

Table 4-6 Settings of Astraada DRV-28 series VFD

Function code	Word	Value range	Default value
P16.41		the motor)	0
P16.41	PZD11 Received PZD12	 9: Virtual input terminal command, 0x000–0x3FF (corresponding to S8, S7, S6, S5, HDIB, HDIA, S4, S3, S2, and S1 in sequence) 10: Virtual output terminal command, 0x00–0x0F (corresponding to RO2, RO1, HDO, and Y1 in sequence) 11: Voltage setting (for V/F separation) (0–1000, in which 1000 corresponds to 100.0% of the rated voltage of the motor) 12: AO output setting 1 (-1000–+1000, in which 1000 corresponds to 100.0%) 13: AO output setting 2 (-1000–+1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed number) 15: LSB of position feedback (signed number) 16: MSB of position feedback (unsigned number) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 	0
		0)	

Response packet (VFD -> master station)

SW: The first word in a PZD response packet is a VFD SW. Table 4-7 describes Astraada DRV-28 series VFD SWs.

Bit	Name	Value	Description	
		1	In forward running	
		2	In reverse running	
0–7	Running state	3	Stopped	
		4	Faulty	
		5	POFF	
8	Bus voltage established	1	Ready to run	
0	Bus voltage established	0	Not ready to run	
9–10	Motor group feedback	0	Motor 1	
9-10	wotor group leeuback	1	Motor 2	
11	Motor type feedback	1	Synchronous motor	
11		0	Asynchronous motor	
	Overlead pro alarm	1	Overload pre-alarm generated	
12	Overload pre-alarm feedback		0	No overload pre-alarm
		0	generated	
13–14	Run/Stop mode	0	Keypad-based control	

Table 4-7 Astraada DRV-28 series VFD SWs

Bit	Name	Value	Description
		1	Terminal-based control
		2	Communication-based control
		3	Reserved
15	Heartbeat feedback	1	Heartbeat feedback
15		0	No heartbeat feedback

Actual value (ACT): The second to twelfth words in a PZD task packet are the main actual values. The main actual frequency values are provided by the main actual value signal source.

Function	Function		
code	Word	Value range	value
P16.43	Transmitted PZD2	0: Invalid	0
P16.44	Transmitted PZD3	1: Running frequency (×100, Hz)	0
P16.45	Transmitted PZD4	2: Set frequency (×100, Hz)	0
P16.46		3: Bus voltage (×10, V)	0
P16.47		4: Output voltage (×1, V)	0
P16.48	Transmitted PZD7	5: Output current (×10, A)	0
P16.49	Transmitted PZD8	6: Actual output torque (×10, %)	0
P16.50	Transmitted PZD9	7: Actual output power (×10, %)	0
P16.51	Transmitted PZD10	8: Rotating speed of the running (×1, RPM)	0
P16.52	Transmitted PZD11	9: Linear speed of the running (×1, m/s) 10: Ramp frequency reference	0
P16.53	Transmitted PZD12	 11: Fault code 12: Al1 value (×100, V) 13: Al2 value (×100, V) 14: Al3 value (×100, V) 15: HDIA frequency (×100, kHz) 16: Terminal input state 17: Terminal output state 18: PID reference (×100, %) 19: PID feedback (×100, %) 20: Rated torque of the motor 21: MSB of position reference (signed number) 22: LSB of position reference (unsigned number) 23: MSB of position feedback (signed number) 24: LSB of position feedback (unsigned number) 	0

Table 4-8 Actual state values of Astraada DRV-28 series VFD

Function code	Word	Value range	Default value
		25: State word	
		26: HDIB frequency value (×100, kHz)	

PKW zone

PKW zone (parameter identification flag PKW1—numerical zone): The PKW zone describes the processing mode of the parameter identification interface. A PKW interface is not a physical interface but a mechanism that defines the transmission mode (such reading and writing a parameter value) of a parameter between two communication ends.

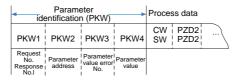


Figure 4-5 Parameter identification zone

In the periodic communication, the PKW zone consists of four 16-bit words. The following table describes the definition of each word.

First word PKW1 (16 bits)			
Bits 15-00	Bits 15–00 Task or response identification flag 0–7		
	Second word PKW2 (16 bits)		
Bits 15-00	Basic parameter address	0–247	
Third word PKW3 (16 bits)			
Bits 15-00	Value (most significant word) of a	00	
	parameter or error code of the returned		
	value		
Fourth word PKW4 (16 bits)			
Bits 15-00	Value (least significant word) of a	0–65535	
	parameter		

Note: If the master station requests the value of a parameter, the values in PKW3 and PKW4 of the packet that the master station transmits to the VFD are no longer valid.

Task request and response: When transmitting data to a slave, the master uses a request number, and the slave uses a response number to accept or reject the request.

Request No. (from the master to a slave)		Response signal	
Request No.	Function	Acceptance	Rejection
0	No task	0	-
1	Requesting the value of a parameter	1, 2	3
2	Modifying a parameter value (one word) [modifying the value only on RAM]	1	3 or 4

Table 4-9 Task identification fl	ag PKW1
----------------------------------	---------

3	Modifying a parameter value (two words) [modifying the value only on RAM]	2	3 or 4
4	Modifying a parameter value (one word) [modifying the value on both RAM and EEPROM]		3 or 4
5	Modifying a parameter value (two words) [modifying the value on both RAM and EEPROM]		3 or 4

Note: The requests #2, #3, and #5 are not supported currently.

Response No. (from a slave to the master)		
Response No.	Function	
0	No response	
1	Transmitting the value of a parameter (one word)	
2	Transmitting the value of a parameter (two words)	
	The task cannot be executed and one of the following error	
	number is returned:	
	1: Invalid command	
	2: Invalid data address	
	3: Invalid data value	
3	4: Operation failure	
	5: Password error	
	6: Data frame error	
	7: Parameter read only	
	8: Parameter cannot be modified during VFD running	
	9: Password protection	

EtherCAT communication card

4.5 Overview

- Thanks for choosing ASTRAADA EC-TX508 communication cards. This manual describes the function specifications, installation, basic operation and settings, and information about the EtherCAT protocol. To ensure that you install and operate the product properly, read this manual and the communication protocol section in the VFD operation manual carefully before you use the product.
- This manual only describes how to operate the EC-TX508 communication card and the related commands but does not provide details about the EtherCAT protocol. For more information about the EtherCAT protocol, read the related specialized articles or books.
- 3. EC-TX508 communication card is defined as an EtherCAT slave station communication card and is used on a VFD that supports EtherCAT communication.
- 4. The EtherCAT communication of this communication card supports two types of process data for reading data from and writing data to VFDs. They are PDOs (process data objects) and SDOs (service data objects) for reading data from and writing data to the object dictionary defined by the manufacturer.

4.6 Features

- 1. Supported functions
- Supports the EtherCAT COE 402 protocol.
- Supports automatic network address setting

2. Supported services

- Supports the PDO service
- Supports the SDO service
- Supports the object dictionary defined by the manufacturer
- > Allowing SDOs to read data from and write data to VFD function codes
- 3. Supported EtherCAT synchronization cycle

Item	Supported specification
	250us
Synchronization cycle	500us
Synchronization cycle	1ms
	2ms

Table 0-1 Supported synchronization cycle

4. Communication ports

Standard RJ45 ports are used in EtherCAT communication. The communication card provides two RJ45 ports with transmission direction defined. Figure 6-1 shows the ports. IN (indicating input) and OUT (indicating ouput) are EtherCAT wiring network ports. Table 6-2 describes the port pins.

Figure 0-1 RJ45 ports

Table 0-2 RJ45 port pins

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

5. State indicators

The EtherCAT communication card provides four LED indicators and four net port indicators to indicate its states. Table 6-3 describes the state indicators.

Item	Color	Function description									
		The green indicator indicates EtherCAT running state.									
RUN Green Pre-OP state: It blinks off 0.2s and on 0.2s.											
Safe-OP state: It blinks off 1s and on 0.2s.											
	OP state: It remains on.										
		The red indicator indicates EtherCAT fault state.									
	No fault: It remains off.										
ALM	Red	Init or Pre-OP state: It blinks off 0.2s and on 0.2s.									
		Safe-OP fault state: It blinks off 1s and on 0.2s.									
		OP fault state: It remains on.									
PWR	Red	3.3V power indicator									
		Off: Indicates that Ethernet connection is not									
	Yellow	established.									
Net port	Tenow	On: Indicates that Ethernet connection is established									
indicator		successfully.									
(IN) Off: Without connection											
	Green On: Wilth connection but inactive										
		Blinks: With connection and active									
Net port	Yellow	Off: Indicates that Ethernet connection is not									

Table 6-3 State indicatorsTable 0-3

Item	Color	Function description
indicator		established.
(OUT)		On: Indicates that Ethernet connection is established
		successfully.
		Off: Without connection
	Green	On: Wilth connection but inactive
		Blinks: With connection and active

4.7 Electrical wiring

The EtherCAT network usually consists of a master station (PLC) and several slave stations (drives or bus extension terminals). Each EtherCAT slave station are configured with two standard Ethernet interfaces, and the electrical wiring diagram is shown in Figure 6-2.

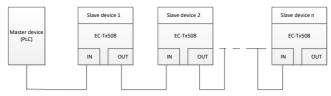


Figure 0-2 Electrical wiring diagram for a linear topology

4.8 Communication

4.8.1 CoE reference model

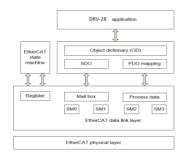


Figure 0-3 CoE reference model

CoE network reference model consists of the data link layer and application layer. The data link layer is responsible for EtherCAT communication protocol. CANopen drive Profile (DS402) communication rules are embedded in the application layer. The object dictionary in CoE includes the parameters, application data, and PDO mapping configuration information.

PDOs are composed of the objects (in the object dictionary) that can perform PDO mapping. The content in PDO data is defined by PDO mapping. PDO data is periodically read and written, which does not require searching the object dictionary. Mail box communication (SDO) is not periodic, which requires searching the

object dictionary.

Note: To parse SDO and PDO data correctly on the EtherCAT data link layer, it is necessary to configure FMMU and Sync Manager (SM).

Synchronization management	Configuration	Size	Start address
Sync Manager 0	Assigned to receive SDO	512byte	0x1000
Sync Manager 1	Assigned to send SDO	512byte	0x1400
Sync Manager 2	Assigned to receive PDO	128byte	0x1800
Sync Manager 3	Assigned to send PDO	128byte	0x1C00

Table 0-4 EtherCAT Sync Manager configuration

4.8.2 EtherCAT slave station information

EtherCAT slave station information file (.xml) is read by the master station to construct the master and slave station configuration. This file contains mandatory information about EtherCAT communication settings. ASTRAADA provides this file AS28ETC0001.xml.

4.8.3 EtherCAT state machine

EtherCAT state machine is used to describe the states and state change of slave station applications. Generally, the master station sends a state change request, while the slave station responds. The state change flow is shown in the following figure.

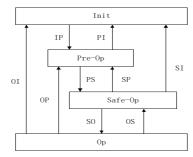


Figure 0-4 EtherCAT state machine flowchart

Table 0-5 EtherCAT	state machine descript	tion
Table 0-5 LUIEICAT	state matime descript	

State	Description						
Init	Both SDO and PDO communication are unavailable.						
	The master station configures the data link layer address and SM channel for SDO communication.						
Init to Pre-Op	The master station initializes DC synchronization information. The master station requests the jump to the Pre-Op state.						

State	Description
	The master station configures the application layer control
	register.
	The slave station checks whether the mailbox is initialized
	properly.
Pre-Op	SDO communication is available but PDO is unavailable.
	The master station configures the SM and FMMU channels
	for PDO communication.
Pre-Op to Safe-	The main station configures PDO mapping through SDO
Op	communication.
Op	The master station requests the jump to the Safe-Op state.
	The slave station checks whether the PDO and DC are
	configured correctly.
	SDO communication is available.
Safe-Op	Communication of receiving PDOs is available, but that of
	sending PDOs is unavailable, in the Safe state.
Safe-Op to Op	The master station requests the jump to the Op state.
Ор	Both SDO and PDO communication are available.

4.8.4 PDO mapping

The process data of an EtherCAT slave station is composed of SM channel objects. Each SM channel object describes the consistent area of the EtherCAT process data and includes multiple PDOs. An EtherCAT slave station with the application control function shall support PDO mapping and reading of SM PDO assigned objects.

The master station can select objects from the object dictionary to perform PDO mapping. PDO mapping configuration is located in the range of 1600h~1603h (RxPDOs: receiving PDOs) and range of 1A00h–1A03h (TxPDOs: sending PDOs) in the object dictionary. The PDO mapping method is shown in the following figure.

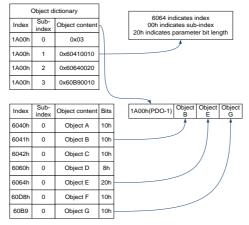


Figure 0-5 PDO mapping method

In addition to PDO mapping, EtherCAT process data switching needs to assign PDOs to SM channels. The

relationship between PDOs and SM channels is established through SM PDO assigned objects (1C12h and 1C13h). The mapping between SM channels and PDOs is shown in the following figure.

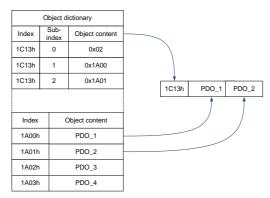


Figure 0-6 SM PDO assignment

Default PDO mapping (Position, Velocity, Torque, Torque limit, Touch probe):

RxPDO (0x1600)	Control word (0x604 0)	Target Position (0x607A)	Target Velocity (0x60FF)	Target Torque (0x6071)	Max. Torque	Mode of Operatio n (0x6060)	Profile velocitv	Touch Probe Function (0x60B8)
TxPDO (0x1A00)	Status word (0x604 1)	Position Actual Value (0x6064)	Speed Actual Value (0x606C)	Torque Actual Value	Followin g Error Actual		Error Code	Touch Probe Value (0x60BA)

4.8.5 DC-based network synchronization

The DC (distributed clock) can enable all EtherCAT devices to use the same system time so as to control the synchronous execution of all device tasks. In the EtherCAT network, the clock with the DC function of the first slave station connected to the master station is used as the reference clock across the network. The other slave stations and master station use this reference clock for synchronization.

Free-Run: The running cycle and communication cycle of each servo drive are not related to the communication cycle of the master station.

DC Mode: The servo drive performs synchronization through Sync0 of the master station.

A.1 CiA402 device protocol

The master station controls the drive through the control word (0x6040) and obtains the current state of the drive by reading the status word (0x6041). The servo drive implements motor control based on master station control commands.

4.8.6 CoE state machine

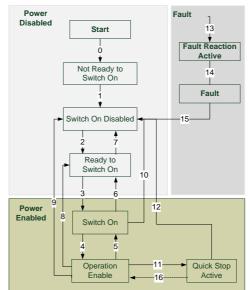


Figure 0-7 CANopen over EtherCAT state machine

Status	Description
Not Ready to Switch On	The drive is in the initialization process.
Switch On Disabled	Drive initialization completes.
Ready to Switch On	The drive is preparing to enter the Switch On
Ready to Switch Off	state, but the motor is not excited.
Switched On	The drive is in the ready state, and the main
Switched On	circuit power supply is normal.
Operation Enable	The drive is enabled and controls the motor
	based on the control mode.
Quick Stop Active	The drive stops in the set manner.
	When detecting an alarm, the drive stops in
Fault Reaction Active	the set manner, but the motor still has the
	exciting signal.
Fault	The drive is in the faulty state, and the motor
raut	has no exciting signal.

6040h control word includes:

- 1. Bit for status control;
- 2. Bit related to control mode;
- 3. Factory-defined control bit.

The bits of 6040h are described as follows.

15	11	10	9	8	7	6	4	3	2
1	0	1							

Facto ry defin e	Reserv ed	Suspe nd	Fau lt res et	Operati on mode	Servo runni ng	Quic k stop	Switc h on main circu it	Serv o bein g run ning
0	0	0	Μ	0	М	М	М	М
MSB			LSB					

BITS 0-3 AND 7 (used for status control):

		Bit of t	the control v	vord		
Command	Fault reset	Enable operatio n	Quick stop	Enable voltag e	Switch on	Transit ions
Shutdown	0	Х	1	1	0	2,6,8
Switch on	0	0	1	1	1	3*
Switch on	0	1	1	1	1	3**
Disable voltage	0	х	х	0	х	7,9,10, 12
Quick stop	0	х	0	1	х	7,10,1 1
Disable operation	0	0	1	1	1	5
Enable operation	0	1	1	1	1	4,16
Fault reset	0-1	Х	Х	Х	Х	15

BITS 4, 5, 6 AND 8 (related to control mode)

		Operation mode					
Bit	Profile position mode	Profile velocity mode	Homing mode				
4	New set-point	Reserved	Homing operation start				
5	Change set immediately	Reserved	Reserved				
6	Abs/rel	Reserved	Reserved				
8	Halt	Halt	Halt				

Control word is set to 0x0F for enabling the drive. Otherwise, the drive will stop. When a fault occurs, if bit 7 of the control word is set to 1, the reset command is enabled.

6041h status word includes:

- 1. Current status bit of drive;
- 2. Status bit related to control mode;
- 3. Factory-defined status bit.

The bits of 6041h are described as follows:

Bit	Description	м/о
0	Ready to switch on	М
1	Switched on	М
2	Operation enabled	М
3	fault	М
4	Voltage enable	М
5	Quick stop	М
6	Switch on disabled	М
7	Warning	0
8	Manufacture specific	0
9	Remote	М
10	Target reached	М
11	Internal limit active	М
12-13	Operation mode specific	0
14-15	Manufacturer specific	0

BIT0-3, 5, AND 6 (related to control mode)

Value(binary)	State
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

BIT4: Voltage enable, when this bit is 1, it indicates that the main circuit power supply is normal.

BIT9: Remote, when this bit is 1, it indicates that the slave station is in the OP state, and the master station can control the drive through PDO.

BIT10: Target reached, this bit differs in meaning under different control modes. When this bit is 1, in cyclic synchronous position mode, it indicates that target position is reached, while in cyclic synchronous velocity mode, it indicates that reference speed is reached; in homing mode, it indicates that homing is completed.

BIT14: When this bit is 1, it indicates motor zero-speed state.

BIT7-8, BIT11-13, and BIT15: Reserved.

4.8.7 Device running mode

Set P00.01=2 (command running channel), P00.02=3 (EtherCAT communication channel), and P16.18 Communication timeout. Position mode and homing mode are achieved only when the drive is in the closed-loop mode.

4.8.7.1 Cyclic Synchronous Position Mode

1. Set 【6060h: Mode of operations】 to 8 (Cyclic synchronous position mode).

2. Set 【6040h: Control word】 to enable the drive (set it to 0x0F for enabling).

3. Set 【607Ah: Target position】 to the target position (unit: user unit).

4. Query for 【6064h: Position actual value】 to obtain actual position feedback of the motor.

5. Query for 【6041h: Status word】 to obtain the status feedback of the drive (following error, target reached and internal limit active).

6. For function details, see function parameters in group P21 in DRV-28 and the specific function commissioning instructions in the basic operations in the manual.

4.8.7.2 Profile Position Mode

1. Set 【6060h: Mode of operations】 to 1 (Profile Position Mode).

2. Set tens of P21.00 (Position command source) to 1 (Digital position), and set P21.16 (Digital positioning mode).

3. Set 【6040h: Control word】 to enable the drive (set it to 0x0F for enabling).

4. Set 【607Ah: Target position】 to the target position (unit: user unit).

5. Query for 【6064h: Position actual value】 to obtain actual position feedback of the motor.

6. Query for 【6041h: Status word】 to obtain the status feedback of the drive (following error, target reached and internal limit active).

7. For function details, see function parameters in group P21 in DRV-28 and the specific function commissioning instructions in the basic operations in the manual.

4.8.7.3 Homing Mode

1. Set 【6060h: Mode of operations】 to 6 (homing mode).

2. Set P22.00.Bit0=1 to enable the spindle positioning, and set P22.03–P22.06.

3. Set 【6040h: Control word】 to enable the drive (set it to 0x0F for enabling). Homing operation start (Bit4) changes from 0 to 1 (Control word Bit4 is set to 1). However, the change from 1 to 0 will terminate Homing.

4. The motor queries the limit switch and Home switch to complete Homing.

5. Query 【6041h: Status word】 to obtain the status feedback of the drive (Homing error, Homing attained, and Target reached).

6. For function details, see function parameters in group P22 in DRV-28 and the specific function commissioning instructions in the basic operations in the manual.

4.8.7.4 Cyclic Synchronous Velocity Mode

1. Set 【6060h: Mode of operations】 to 9 (Cyclic synchronous velocity mode).

2. Set 【6040h: Control word】 to enable the drive (set it to 0x0F for enabling) and start the motor for running.

3. Set **(**60FFh: Target velocity**)** to set the target rotation speed (unit: rpm), which corresponds to P00.10 (a positive value indicates forward rotation and a negative value indicates reverse rotation).

4. Query **[**6041h: Status word **]** to obtain the status feedback of the drive (Speed zero, Max slippage error, Target reached, and Internal limit active).

4.8.7.5 Cyclic Synchronous torque Mode

1. Set 【6060h: Mode of operations】 to 10 (Cyclic synchronous torque mode).

2. Set the VFD to torque control (P03.32=1).

3. Set 【6040h: Control word】 to enable the drive (set it to 0x0F for enabling) and start the motor for running.

4. Set 【6071h: Target torque】 to set the target torque.

5. Query **[**6041h: Status word **]** to obtain the status feedback of the drive (Speed zero, Max slippage error, Target reached, and Internal limit active).

4.9 Function code modification

Index	Sub- index	Description	Permission	Data type	Default		
2000h	0	Read function codes	RW	UINT32	0		
Bits 00–15	: No funct				{ D00 10}		
	ates 2000	eration: Read th h to write 0x00			value of 2001h		
2001h	0	Read response	RO	UINT32	0		
Bits 16–31	: 0x0001	read success					
Bits 00–15	: Paramet	er value read b	y 2000h				
Bits 16–31	: 0x0003	read error					
Bits 00–15	: Error co	des					
	0x0002	illegal data add	lress				
	0x0009	password prote	ection				
2002h	0	Write function codes	RW	UINT32	0		
Bits 16-31	: Write fu	nction codes					
Bits 00–15: Written data							
Write operation example: Modify the value of P00.10 to 50.00.							
SDO operates 2002h to write 0x000A1388. View the response value of 2003h							
write operation.							
2003h	0	Write	RO	UINT32	0		

Index	Sub- index	Description	Permission	Data type	Default		
		response					
Bits 16-31	: 0x0001 v	write success					
Bits 00-15	: Paramet	er value writte	n by 2002h				
Bits 16-31	: 0x0003 v	write error					
Bits 00-15	: Error co	des					
0x0002 illegal data address							
0x0003 illegal data value							
0x0007 read-only parameter							
	0x0008 the parameter is unchangeable during running						

lu dau			Access		
Index (hexadecimal)	Subindex	Description	permissio n	Data type	Default value
1000	0	Device type	RO	Unsigned32	0x0000 0000
1001	0	Error register	RO	Unsigned8	/
		Erro	or code regi	ster	
1003	0	Number of subindexes	RW	/	/
	1	Error code	RO	Unsigned32	/
1005	0	COB-ID SYNC	RW	Unsigned32	/
1006	0	Communication cycle period	RW	Unsigned32	/
1007	0	Length of synchronous window	RW	Unsigned32	/
1008	0	Manufacturer- defined device name	CONST	String	ASTRAADA CANopen
1009	0	Manufacturer- defined hardware version	CONST	String	V1.00
100A	0	Manufacturer- defined software version	CONST	String	V1.00
100C	0	Protection time	RW	Unsigned16	0
100D	0	Life cycle factor	RW	Unsigned16	0
		Consun	ner heartbe	at time	
1016	0	Number of subindexes	RO	Unsigned8	/
	1	Consumer heartbeat time	RW	Unsigned32	/
1017	0	Producer heartbeat time	RW	Unsigned16	0
		Ide	ntifier obje	cts	
	0	Number of subindexes	RO	Unsigned8	4
1018	1	Supplier ID	RO	Unsigned32	0x0000 0000
	2	Product code	RO	Unsigned32	0x0000 0000
	3	Revision No.	RO	Unsigned32	0x0000 0000
	4	Sequence No.	RO	Unsigned32	0x0000 0000
1200	Servo SDO				

Appendix B CANopen object dictionary

Index (hexadecimal)	Subindex	Description	Access permissio n	Data type	Default value	
	0	Number of subindexes	RO	Unsigned8	/	
	1	COB-ID Client -> server (Rx)	RO	Unsigned32	600H+Node ID	
	2	COB-ID Server -> client (Tx)	RO	Unsigned32	580H+Node	
		chefte (TX)	SDO		10	
		Number of				
	0	subindexes	RO	Unsigned8	/	
		COB-ID Client ->				
1280	1	server (Rx)	RO	Unsigned32	/	
1280		COB-ID Server ->				
	2		RO	Unsigned32	/	
	3	client (Tx) Node ID of	RO	Unsigned8	/	
		server SDO		_	,	
		PDO1 Rx con	nmunicatio	n parameters		
		Supported Max.	RO	Unsigned8	/	
	0	number of				
		subindexes				
1400	1	COB-ID used by PDO	RW	Unsigned32	/	
	2	Transmission	RW	Unsigned8	/	
	2	type	,	11	,	
	3	/	/	Unsigned16	/	
	4	/	/	Unsigned8	/	
	5	Event timer	RW	Unsigned16	/	
	PDO2 Rx communication parameters					
	0	Supported Max. number of	RO	Unsigned8	/	
1401	1	subindexes COB-ID used by PDO	RW	Unsigned32	/	
1401	2	Transmission type	RW	Unsigned8	/	
	3	/	/	Unsigned16	/	
	4	. /	. /	Unsigned8	. /	
	5	, Event timer	, RW	Unsigned16	. /	
	-			n parameters	,	
		Supported Max.				
1402	0	number of	RO	Unsigned8	/	
		subindexes				

Index (hexadecimal)	Subindex	Description	Access permissio n	Data type	Default value		
	1	COB-ID used by PDO	RW	Unsigned32	/		
	2	Transmission type	RW	Unsigned8	/		
	3	/	/	Unsigned16	/		
	4	/	/	Unsigned8	/		
	5	Event timer	RW	Unsigned16	/		
		PDO4 Rx communication parameters					
	0	Supported Max. number of subindexes	RO	Unsigned8	/		
1403	1	COB-ID used by PDO	RW	Unsigned32	/		
	2	Transmission type	RW	Unsigned8	/		
	3	/	/	Unsigned16	/		
	4	/	/	Unsigned8	/		
	5	Event timer	RW	Unsigned16	/		
		PDO1 Rx	mapping pa	arameters			
	0	Number of application program objects mapped in PDO	RW	Unsigned8	3		
1600	1	First mapped object	RW	Unsigned32	0x21000010		
	2	Second mapped object	RW	Unsigned32	0x21000110		
	3	Third mapped object	RW	Unsigned32	0x21000210		
		PDO2 Rx	mapping pa	arameters			
	0 applicatio program obj	Number of application program objects mapped in PDO	RW	Unsigned8	4		
1601	1	First mapped object	RW	Unsigned32	0x21010010		
	2	Second mapped object	RW	Unsigned32	0x21000310		
	3	Third mapped object	RW	Unsigned32	0x21000410		
	4	Fourth mapped object	RW	Unsigned32	0x21000510		

Index	Subindex	Description	Access permissio	Data type	Default value	
(hexadecimal)	JUDITUEX	Description	n	Data type	Derault value	
	PDO3 Rx mapping parameters					
		Number of				
	_	application	RW	Unsigned8		
	0	program objects			4	
		mapped in PDO				
	1	First mapped	RW	Lincignod 22	0.04000640	
1602	T	object	L AA	Unsigned32	0x21000610	
	2	Second mapped	RW	Unsigned32	0x21000710	
	2	object		Unsigned 52	0721000710	
	3	Third mapped	RW	Unsigned32	0x21000810	
		object		ensigned b2	0//22000020	
	4	Fourth mapped	RW	Unsigned32	0x21000910	
		object		_		
			mapping pa	arameters		
	0	Number of	RW		4	
		application		Unsigned8		
		program objects mapped in PDO				
		First mapped	RW	Unsigned32	0x21000a10	
1603	1	object				
	2	Second mapped	RW	Unsigned32	0x21000b10	
	2	object				
	3	Third mapped	RW	Unsigned32	0x21000c10	
	5	object				
	4	Fourth mapped	RW	Unsigned32	0x21000d10	
		object				
			nmunicatio	n parameters		
	0	Supported Max.		Underselle	,	
	0	number of subindexes	RO	Unsigned8	/	
		COB-ID used by				
1800	1	PDO	RW	Unsigned32	/	
		Transmission				
	2	type	RW	Unsigned8	255	
	3	Disabled time	RW	Unsigned16	500	
	4	Reserved	RW	Unsigned8	/	
	5	Event timer	RW	Unsigned16	0	
		PDO2 Tx com	nmunicatio	n parameters		
1801		Supported Max.				
1001	0	number of	RO	Unsigned8	/	
		subindexes				

Index (hexadecimal)	Subindex	Description	Access permissio n	Data type	Default value		
	1	COB-ID used by PDO	RW	Unsigned32	/		
	2	Transmission type	RW	Unsigned8	254		
	3	Disabled time	RW	Unsigned16	500		
	4	Reserved	RW	Unsigned8	/		
	5	Event timer	RW	Unsigned16	0		
		PDO3 Tx com	nmunicatio	n parameters			
	0	Supported Max. number of subindexes	RO	Unsigned8	/		
1802	1	COB-ID used by PDO	RW	Unsigned32	/		
	2	Transmission type	RW	Unsigned8	254		
	3	Disabled time	RW	Unsigned16	500		
	4	Reserved	RW	Unsigned8	/		
	5	Event timer	RW	Unsigned16	0		
	PDO4 Tx communication parameters						
	0	Supported Max. number of subindexes	RO	Unsigned8	/		
1803	1	COB-ID used by PDO	RW	Unsigned32	/		
	2	Transmission type	RW	Unsigned8	254		
	3	Disabled time	RW	Unsigned16	500		
	4	Reserved	RW	Unsigned8	/		
	5	Event timer	RW	Unsigned16	0		
			mapping pa	arameters			
	0	Number of application program objects mapped in PDO	RW	Unsigned8	3		
1A00	1	First mapped object	RW	Unsigned32	0x20000010		
	2	Second mapped object	RW	Unsigned32	0x20000110		
	3	Third mapped object	RW	Unsigned32	0x20000210		
1A01	PDO2 Tx mapping parameters						

Index (hexadecimal)	Subindex	Description	Access permissio n	Data type	Default value
	0	Number of application program objects mapped in PDO	RW	Unsigned8	4
	1	First mapped object	RW	Unsigned32	0x20010010
	2	Second mapped object	RW	Unsigned32	0x20000310
	3	Third mapped object	RW	Unsigned32	0x20000410
	4	Fourth mapped object	RW	Unsigned32	0x20000510
		PDO3 Tx	mapping pa	arameters	
	0	Number of application program objects mapped in PDO	RW	Unsigned8	4
1A02	1	First mapped object	RW	Unsigned32	0x20000610
	2	Second mapped object	RW	Unsigned32	0x20000710
	3	Third mapped object	RW	Unsigned32	0x20000810
	4	Fourth mapped object	RW	Unsigned32	0x20000910
		PDO4 Tx	mapping pa	arameters	
	0	Number of application program objects mapped in PDO	RW	Unsigned8	4
1A03	1	First mapped object	RW	Unsigned32	0x20000a10
	2	Second mapped object	RW	Unsigned32	0x20000b10
	3	Third mapped object	RW	Unsigned32	0x20000c10
	4	Fourth mapped object	RW	Unsigned32	0x20000d10

Index	Subindex	Description	Access permission	Data	Default value	
1000h	0	Device type	RO	type UINT32	0x00000192	
1000h	0	Error register	RO	UINT8	0	
100111		Factory device		01110	ASTRAADA-	
1008h	0	name	RO	String	EtherCAT	
		Factory			Hardware	
1009h	0	hardware	RO	String	version	
	-	version		8	depended	
		Factory			Software	
100Ah	0	software	RO	String	version	
		version		0	depended	
			ID object			
	0	Included max.			4	
	0	sub-index	RO	UINT8	4	
1010	1	Supplier ID	RO	UINT32	0x000004D8	
1018h	2	Product code	RO	UINT32	0x00009252	
	2	Revision	DO		000000001	
	3	number	RO	UINT32	0x0000001	
	4	Serial number	RO	UINT32	0x0000001	
		RX PDO1	mapping para	neter		
		Number of				
	0	supported	RW	UINT8	8	
	0	mapping				
		objects				
	1	First mapping	RW	UINT32	0x60400010	
	-	object	1.00	011132	0700400010	
	2	Second	RW	UINT32	0x607A0020	
	-	mapping object		011132	0,007,10020	
	3	Third mapping	RW	UINT32	0x60FF0020	
1600h		object				
	4	Fourth mapping	RW	UINT32	0x60710010	
		object				
	5	Fifth mapping	RW	UINT32	0x60720010	
		object				
	6	Sixth mapping object	RW	UINT32	0x60600008	
	_	Seventh				
	7	mapping	RW	UINT32	0x60810020	
	0	Eighth mapping	RW		0	
	8	object	RW	UINT32	0x60B80010	
			mapping para	meter		
		Number of				
	0	supported	RW	UINT8	2	
	Ū	mapping		Onvio	2	
1601h		objects				
	1	First mapping	RW	UINT32	0x60400010	
	1	object				
	2	Second	RW	UINT32	0x607A0020	
ļ		mapping object				
	RX PDO3 mapping parameter					
1602h	<u>^</u>	Number of	D) 11		2	
-	0	supported	RW	UINT8	2	
		mapping				

Appendix C EtherCAT object dictionary

objects ox60400010 1 First mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x607A0020 RX PDO4 mapping parameter Number of supported object RW UINT32 0x60400010 1 First mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x60400010 3 Tirst mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 3 Third mapping object RW UINT32 0x60670010 5 Fifth mapping object RW UINT32 0x60670020 6 Sixth mapping object RW UINT32 0x60610008	Index	Subindex	Description	Access permission	Data type	Default value
1 First mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x607A0020 0 Number of supported mapping object RW UINT32 0x607A0020 1 First mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x607A0020 2 Second mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x607A0020 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 3 Third mapping object RW UINT32 0x60640020 4 Fourth mapping object RW UINT32 0x60640020 5 Fifth mapping object RW UINT32 0x60640020 6 Sixth mapping object RW UINT32 0x60640020 7 Seventh mapping object RW			objects			
2 mapping object RW UIN132 0x607A0020 RX PDO4 mapping parameter 0 Number of supported mapping objects RW UINT32 0x60400010 1 First mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x60400010 2 Second mapping object RW UINT32 0x60400020 1 First mapping objects RW UINT32 0x60410010 2 Supported mapping object RW UINT32 0x60410010 3 Third mapping object RW UINT32 0x60640020 3 Third mapping object RW UINT32 0x60640020 4 Fourth mapping object RW UINT32 0x60640020 5 Fifth mapping object RW UINT32 0x606740020 6 Sixth mapping object RW UINT32 0x60610008 7 Seventh mapping object RW UINT32 0x60640020 1 <td></td> <td>1</td> <td>First mapping object</td> <td>RW</td> <td>UINT32</td> <td>0x60400010</td>		1	First mapping object	RW	UINT32	0x60400010
Number of supported mapping objectsRW WUINT821603h1First mapping objectRWUINT320x604000102Second mapping objectRWUINT320x607A00202Second mapping objectRWUINT320x607A00200Number of supported mappingRWUINT320x604100102Second mappingRWUINT320x604100102Second mappingRWUINT320x606400201First mapping objectRWUINT320x606400203Third mapping objectRWUINT320x606400204Fourth mapping objectRWUINT320x6067400205Fifth mapping objectRWUINT320x606100086Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x606100088Eighth mapping objectRWUINT320x606400208Eighth mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101A01h1First mapping objectRWUINT320x604100102Second mapping object <td></td> <td>2</td> <td></td> <td>RW</td> <td>UINT32</td> <td>0x607A0020</td>		2		RW	UINT32	0x607A0020
0supported mapping objectsRWUINT821603h1First mapping objectRWUINT320x604000102Second mapping objectRWUINT320x607A00202Second mapping objectRWUINT320x607A00201Number of supported mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400202Second mapping objectRWUINT320x606400203Third mapping objectRWUINT320x606400204Fourth mapping objectRWUINT320x606400205Fifth mapping objectRWUINT320x606400206Sixth mapping objectRWUINT320x606400207Seventh mapping objectUINT320x606400208Eighth mapping objectRWUINT320x608A00207Seventh mapping objectRWUINT320x608A00201A01hFirst mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101A01hFirst mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101A01hFirst mapping objectRWUINT320x604100102Second mapping objectR			RX PDO4	mapping para	meter	
1 object NW UINT32 0x0000010 2 Second mapping object RW UINT32 0x607A0020 0 Supported mapping objects RW UINT32 0x607A0020 1 First mapping object RW UINT32 0x6040010 2 Second mapping object RW UINT32 0x6040020 2 Second mapping object RW UINT32 0x60640020 3 Third mapping object RW UINT32 0x60670010 4 Fourth mapping object RW UINT32 0x60670010 5 Fifth mapping object RW UINT32 0x60610008 7 Seventh mapping object RW UINT32 0x60610008 7 Seventh mapping object RW UINT32 0x608A0020 8 Eighth mapping object RW UINT32 0x6040020 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0	1603h	0	supported mapping objects	RW	UINT8	2
2 mapping object RW UINT32 0x607A0020 TX PDO1 mapping parameter 0 Number of supported mapping object RW UINT8 8 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 3 Third mapping object RW UINT32 0x60640020 4 Fourth mapping object RW UINT32 0x60670010 5 Fifth mapping object RW UINT32 0x606740020 6 Sixth mapping object RW UINT32 0x6060008 7 Seventh mapping object RW UINT32 0x6080020 8 Eighth mapping object RW UINT32 0x608A0020 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 1 Fi		1		RW	UINT32	0x60400010
Number of supported mapping objectsRWUINT881First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400203Third mapping objectRWUINT320x606600204Fourth mapping objectRWUINT320x606700105Fifth mapping objectRWUINT320x607700106Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x608000108Eighth mapping objectRWUINT320x608A00200TX PDO2 mapping parameterVint320x604100101A01hFirst mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101A02hFirst mapping objectsRWUINT320x604100101A02hTirst mapping objectRWUINT320x604100102Second mapping objectsRWUINT320x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x60400201A02hTrist mapping objectRWUINT320x60400201A03hTX PDO4 mapping parameterUINT32 <td></td> <td>2</td> <td>mapping object</td> <td></td> <td></td> <td>0x607A0020</td>		2	mapping object			0x607A0020
0Supported mapping objectsRWUINT881First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400203Third mapping objectRWUINT320x60600204Fourth mapping objectRWUINT320x606700105Fifth mapping objectRWUINT320x607700106Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x60600208Eighth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x60600208Eighth mapping objectRWUINT320x60600201A01hFirst mapping objectRWUINT320x60400201A01hFirst mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101First mapping objectRWUINT320x604100101First mapping objectRWUINT320x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101First mapping 			TX PDO1	mapping para	meter	-
Imapping objectsImapping objectImapping objectImapping1First mapping objectRWUINT320x6064100102Second mapping objectRWUINT320x606600203Third mapping objectRWUINT320x606700104Fourth mapping objectRWUINT320x607700105Fifth mapping objectRWUINT320x606100086Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x60800008Eighth mapping objectRWUINT320x60800008Eighth mapping objectRWUINT320x60800001A01hFirst mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101A01hFirst mapping objectRWUINT320x606400201A01hFirst mapping objectRWUINT320x606400201A02hFirst mapping objectRWUINT320x606400201A02hFirst mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping ob		0		D\\/		Q
1objectRWUINT320x604100102Second mapping objectRWUINT320x606400203Third mapping objectRWUINT320x606C00204Fourth mapping objectRWUINT320x607700105Fifth mapping objectRWUINT320x607700106Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x608900108Eighth mapping objectRWUINT320x608400200Supported mapping objectRWUINT320x608400201A01hIFirst mapping objectRWUINT320x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101First mapping objectRWUINT320x606400201A02hTX PDO3 mapping parameterINMber of supported mapping objectsUINT320x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101A02hIFirst mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400201A03hTX PD04 mapping parameterUINT320x60640020		0		NVV	UINTO	0
2mapping objectRWUINT320x606400203Third mapping objectRWUINT320x606C00204Fourth mapping objectRWUINT320x607700105Fifth mapping objectRWUINT320x60F400206Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x608900108Eighth mapping objectRWUINT320x608A00208Eighth mapping objectRWUINT320x608A00201A01h1First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400201A01h1First mapping objectRWUINT320x606400201A02h1First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400201A03hTX		1		RW	UINT32	0x60410010
1A00h3objectNWUINT320x60600204Fourth mapping objectRWUINT320x607700105Fifth mapping objectRWUINT320x607400206Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x60800208Eighth mapping objectRWUINT320x60800208Eighth mapping objectRWUINT320x608A00209TX PDO2 mapping parameter0x608400200x608400201A01hFirst mapping objectsRWUINT320x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400201A02hTX PDO3 mapping parameterNumber of supported mapping objectRWUINT320x606400201A02hTX PDO3 mapping parameter0Supported mapping objectsRWUINT320x606400201A02hTX PDO3 mapping parameter1First mapping objectsRWUINT320x604100102Second mapping objectRWUINT320x604100100x606400201First mapping objectRWUINT320x606400201Second mapping objectRWUINT320x606400201Second mapping objectRWUINT320x606400201Second mapping objectRWUINT320x60640020		2	mapping object	RW	UINT32	0x60640020
4objectRWUINT320x607700105Fifth mapping objectRWUINT320x60F400206Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x60800108Eighth mapping objectRWUINT320x60800208Eighth mapping objectRWUINT320x608A00201A01hTX PDO2 mapping parameter0x604100100x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400201First mapping objectRWUINT320x606400201A01hIFirst mapping objectRWUINT320x606400201A01hIFirst mapping objectRWUINT320x606400201A02hIFirst mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400201A03hTX PDO4 mapping parameterUINT320x60640020	1A00h	3	object	RW	UINT32	0x606C0020
5objectRWUINT320x60F400206Sixth mapping objectRWUINT320x606100087Seventh mapping objectRWUINT320x608900108Eighth mapping objectRWUINT320x60800208Eighth mapping objectRWUINT320x608A00201401h1First mapping objectRWUINT381A01h1First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400202Second mapping objectRWUINT320x606400201First mapping objectRWUINT320x606400201First mapping objectRWUINT320x604100101First mapping objectRWUINT320x604100101First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400201403hTX PDO4 mapping parameterUINT320x60640020		4	object	RW	UINT32	0x60770010
b object RW UINT32 0x60610008 7 Seventh mapping object RW UINT32 0x60890010 8 Eighth mapping object RW UINT32 0x60840020 8 Eighth mapping object RW UINT32 0x60840020 1401h Number of supported mapping object RW UINT8 8 1401h First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 1 First mapping object RW UINT32 0x60640020 1 First mapping object RW UINT32 0x60410010 1 First mapping objects RW UINT32 0x60410010 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32		5	object	RW	UINT32	0x60F40020
7 mapping object RW UINT32 0x60B90010 8 Eighth mapping object RW UINT32 0x60BA0020 TX PDO2 mapping parameter 0 Supported mapping objects RW UINT32 0x60BA0020 1 Number of supported mapping objects RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 2 Second mapping object RW UINT32 0x60640020 1 First mapping object RW UINT32 0x60640020 1 First mapping objects RW UINT3 8 1A02h 1 First mapping objects RW UINT3 0x60410010 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020		6	object	RW	UINT32	0x60610008
Number of supported mapping objects RW UINT32 0x60BA0020 1A01h Number of supported mapping objects RW UINT3 8 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 1 First mapping object RW UINT32 0x60640020 1 First mapping object RW UINT32 0x60640020 1 First mapping objects RW UINT32 0x60640020 1 First mapping objects RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 1 First mapping object RW UINT32 0x60640020 1 First mapping object RW UINT32 0x60640020 1403h TX PDO4 mapping parameter IINT32 IINT32 IINT32		7	mapping object	RW	UINT32	0x60B90010
IA01hNumber of supported mapping objectsRWUINT881First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400202Second mapping objectRWUINT320x606400201TX PDO3 mapping parameter0Supported mapping objectsRWUINT881A02h1First mapping objectRWUINT320x604100102Second mapping objectRWUINT320x604100102Second mapping objectRWUINT320x606400201403hTX PDO4 mapping parameterTX PDO4 mapping parameterTX PDO4 mapping parameter		8	object			0x60BA0020
1A01h 0 supported mapping objects RW UINT8 8 1A01h 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 2 Second mapping object RW UINT32 0x60640020 1 First mapping objects RW UINT32 0x60640020 1A02h 1 First mapping object RW UINT8 8 1A02h 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60410010 1 First mapping object RW UINT32 0x60640020				mapping para	meter	
1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 2 Second mapping object RW UINT32 0x60640020 1 TX PDO3 mapping parameter supported mapping objects RW UINT8 8 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020	1A01h	0	supported mapping	RW	UINT8	8
2 mapping object RW UINT32 0x60640020 TX PDO3 mapping parameter 1A02h Number of supported mapping objects RW UINT8 8 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 1 TX PDO4 mapping parameter 0x60640020		1	First mapping	RW	UINT32	0x60410010
IA02h Number of supported mapping objects RW UINT8 8 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 1403h TX PD04 mapping parameter TX PD04 mapping parameter		2	mapping object			0x60640020
1A02h 0 supported mapping objects RW UINT8 8 1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 1A03h TX PD04 mapping parameter				mapping para	meter	
1 First mapping object RW UINT32 0x60410010 2 Second mapping object RW UINT32 0x60640020 1403h TX PD04 mapping parameter TX PD04 mapping parameter TX PD04 mapping parameter	1A02h	0	supported mapping	RW	UINT8	8
2 Second mapping object RW UINT32 0x60640020 1403h TX PD04 mapping parameter TX PD04 mapping parameter TX PD04 mapping parameter TX PD04 mapping parameter		1	First mapping	RW	UINT32	0x60410010
TX PDO4 mapping parameter		2	Second	RW	UINT32	0x60640020
	14026			mapping para	meter	
	TUCOUI	0	Number of	RW	UINT8	8

Index	Subindex	Description	Access permission	Data type	Default value	
		supported mapping objects				
	1	First mapping object	RW	UINT32	0x60410010	
	2	Second mapping object	RW	UINT32	0x60640020	
		SM cor	nmunication ty	ype		
	0	Max. sub-index	RO	UINT8	4	
	1	SM0 communication type	RO	UINT8	0x01	
1C00h	2	SM1 communication type	RO	UINT8	0x02	
	3	SM2 communication type	RO	UINT8	0x03	
	4	SM3 communication type	RO	UINT8	0x04	
		RxP	DO assignment	t		
1C12h	0	Max. sub-index	RW	UINT8	1	
101211	1	RxPDO assigned object index	RW	UINT16	0x1600	
		TxPDO assignment				
1C13h	0	Max. sub-index	RW	UINT8	1	
101511	1	TxPDO assigned object index	RW	UINT16	0x1A00	
		SM synchronization output parameter				
	0x00	Max. sub-index	RO	UINT8	0x20	
	0x01	Synchronization mode	RW	UINT16	0x02	
	0x02	Cycle time	RO	UINT32	0	
	0x03	Switching time	RO	UINT32	0	
	0x04	Supported synchronization type	RO	UINT16	0x4006	
	0x05	Min. periodic time	RO	UINT32	0x0003D090	
1C32h	0x06	Calculation and replication time	RO	UINT32	0	
	0x07	Reserved	RW	UINT32	0	
	0x08	Obtained periodic time	RW	UINT16	0	
	0x09	Delay time	RO	UINT32	0	
	0x0A	Sync0 time	RW	UINT32	-	
	0x0B	SM event loss counter	RO	UINT32	0	
	0x0C	Circulation timeout counter	RO	UINT32	0	
	0x0D	Counter of too short switching	RO	UINT32	0	

Index	Subindex	Description	Access permission	Data type	Default value		
	0x20	Synchronization error	RO	UINT8	0		
		SM synchron	ization input p	parameter			
	0x00	Max. sub-index	UINT8	0x20			
	0x01	Synchronization mode	RW	UINT16	0x02		
	0x02	Cycle time	RO	UINT32	0		
	0x03	Switching time	RO	UINT32	0		
	0x04	Supported synchronization type	RO	UINT16	0x4006		
	0x05	Min. periodic time	RO	UINT32	0x0003D090		
	0x06	Calculation and replication time	RO	UINT32	0		
1C33h	0x07	Reserved	RW	UINT32	0		
	0x08	Obtained periodic time	RW	UINT16	0		
	0x09	Delay time	RO	UINT32	0		
	0x0A	Sync0 time	RW	UINT32	-		
	0x0B	SM event loss counter	RO	UINT32	0		
	0x0C	Circulation timeout counter	RO	UINT32	0		
	0x0D	Counter of too short switching	RO	UINT32	0		
	0x20	Synchronization error	RO	UINT8	0		
2000h	0	Read function codes	RW	UINT32	0		
2001h	0	Read response	RO	UINT32	0		
2002h	0	Write function codes	RW	UINT32	0		
2003h	0	Write response	RO	UINT32	0		
603Fh	0	Error code	RO	UINT16	0		
6040h	0	Control word	RW	UINT16	0		
6041h	0	Status word	RO	UINT16	0		
605Dh	0	Suspension mode	RW	INT16	0		
6060h	0	Operation mode	RW	UINT16	0		
6061h	0	Operation mode display	RO	UINT16	0		
6062h	0	Position command	RO	DINT32	0		
6063h	0	Position feedback	RO	DINT32	0		
6064h	0	Position feedback	RO	DINT32	0		
6065h	0	Position deviation range	RW	UDINT32	0		
6066h	0	Too-large position	RW	UINT16	0		

Index	Subindex	Description	Access permission	Data type	Default value
		deviation timeout			
6067h	0	Position pulse range	RW	UDINT32	0
606Ch	0	Actual speed	RW	DINT32	0
6071h	0	Target torque	RW	INT16	0
6072h	0	Max. torque	RW	UINT16	0
6073h	0	Max. current	RO	UINT16	0
6075h	0	Motor rated current	RO	UDINT32	0
6076h	0	Motor rated torque	RO	UDINT32	0
6077h	0	Actual torque	RO	INT16	0
6078h	0	Actual current	RO	INT16	0
6079h	0	Bus voltage	RO	UDINT32	0
607Ah	0	Target position	RW	INT16	0
			tion range limi	t	
	0	Number of sub- indexes	RW	UINT8	2
607Bh	1	Min. position range limit	RW	INT32	0
	2	Max. position range limit	RW	INT32	0
607Ch	0	Coordinate deviation	RW	DINT32	0
6081h	0	Speed in industrial regulations	RW	UDINT32	0
6083h	0	ACC in industrial regulations	RW	UDINT32	0
6084h	0	DEC in industrial regulations	RW	UDINT32	0
			Gear ratio		
	0	Number of sub- indexes	RW	UINT8	2
6091h	1	Motor resolution	RW	UINT32	0x00000001
	2	Bearing axle resolution	RW	UINT32	0x0000001
			osition factor	1	
6093h	0	Number of sub- indexes	RW	UINT8	2
	1	Molecule	RW	UINT32	0x0000001
	2	Set constant	RW	UINT32	0x0000001
6098h	0	Zeroing mode	RW	INT16	0
			eroing speed		
	0	Number of sub- indexes	RW	UINT8	2
6099h	1	Search limit switch speed	RW	UINT32	0
	2	Search zero- phase speed	RW	UINT32	0

Index	Subindex	Description	Access permission	Data type	Default value
60B8h	0	Probe control	RW	UINT16	0
60B9h	0	Probe status	RO	UINT16	0
60BAh	0	Probe position rising edge	RO	INT32	0
60F4h	0	Position deviation	RO	INT32	0
60FDh	0	Digital input	RO	UINT32	0
60FEh	0	Digital output	RO	INT32	0
60FFh	0	Target speed	RW	INT32	0
6502h	0	Drive mode	RO	UINT32	0x00003A5

Function	News	Denomentary descriptions	Setting	Default
code	Name	Parameter description	range	value
P00.01	Channel of running	0: Keypad 1: Terminal	0–2	0
	commands	2: Communication		-
		0: Modbus communication		
		1: PROFIBUS/CANopen/DeviceNet		
		communication		
		2: Ethernet communication		
	Communicatio	3: EtherCAT/PROFINET/EtherNetIP		
P00.02	n channel of	communication	0–5	0
	running commands	4: PLC programmable extension		-
	commands	card		
		5: Wireless communication card		
		Note: Channels 1, 2, 3, 4, and 5 are		
		extension functions that require		
	Frequency A	corresponding extension cards. 0: Keypad		
P00.06	command	1–8: Reserved	0–15	0
	setting mode	9: PROFIBUS/CANopen/DeviceNet		
		communication 10: Ethernet communication		
	Frequency B command	11–12: Reserved		
P00.07		13:	0–15	2
	setting mode	EtherCAT/PROFINET/EtherNetIP		
		communication 14–15: Reserved		
		0–1: Keypad		
		2–7: Reserved		
		8: PROFIBUS/CANopen/DeviceNet		
	Torque setting	communication 9: Ethernet communication		
P03.11	mode	10: Reserved	0–12	0
		11:		
		EtherCAT/PROFINET/EtherNetIP communication		
		12: Reserved		
		0: Keypad (P03.16)		
	6	1–6: Reserved		
	Setting mode of upper	7: PROFIBUS/CANopen/DeviceNet communication		
502.44		8: Ethernet communication	0.42	
P03.14	of forward	9: Reserved	0–12	0
	running in	10:		
	torque control	EtherCAT/PROFINET/EtherNetIP communication		
		11–12: Reserved		
	Setting mode	0: Keypad (P03.17)		
P03.15	of upper	1–6: Reserved 7: PROFIBUS/CANopen/DeviceNet	0–12	0
PU3.13	of reverse	communication	0-12	U
	running in	8: Ethernet communication		

Appendix D Related function codes

Function code	Name	Parameter description	Setting range	Default value
	torque control	9: Reserved 10: EtherCAT/PROFINET/EtherNetIP communication 11–12: Reserved		
P03.18	Setting mode of upper limit of electromotive torque	0: Keypad (P03.20) 1–5: Reserved 6: PROFIBUS/CANopen/DeviceNet communication 7: Ethernet communication 8: Reserved 9: EtherCAT/PROFINET/EtherNetIP communication 10–11: Reserved	0–11	0
P03.19	Setting mode of upper limit of brake torque	0: Keypad (P03.21) 1–5: Reserved 6: PROFIBUS/CANopen/DeviceNet communication 7: Ethernet communication 8: Reserved 9: EtherCAT/PROFINET/EtherNetIP communication 10–11: Reserved	0–11	0
P04.27	Voltage setting channel	0: Keypad (P04.28) 1–7: Reserved 8: PROFIBUS/CANopen/DeviceNet communication 9: Ethernet communication 10: Reserved 11: EtherCAT/PROFINET/EtherNetIP communication 12–13: Reserved	0–13	0
P06.01	Y1 output	0: Invalid	0–63	0
P06.02	HDO output	1–23: Reserved	0–63	0
P06.03	Relay output RO1	24:	0–63	1
P06.04	Relay output RO2	PROFIBUS/CANopen/DeviceNet communication virtual terminal output 25: Ethernet communication virtual terminal output 26–33: Reserved 34: EtherCAT/PROFINET/EtherNetIP communication virtual terminal output 35–63: Reserved	0–63	5
P06.14	Analog output	0: Running frequency	0–47	0
	A01	1–15: Reserved	0–47	0

Function code	Name	Parameter description	Setting range	Default value
	speed pulse	16:		
	output	PROFIBUS/CANopen/DeviceNet		
		communication setting 1		
		17:		
		PROFIBUS/CANopen/DeviceNet		
		communication setting 2		
		18: Ethernet communication		
		setting 1		
		19: Ethernet communication		
		setting 2		
		20: Reserved		
		21:		
		EtherCAT/PROFINET/EtherNetIP		
		communication setting 1		
		22–26: Reserved		
		27:		
		EtherCAT/PROFINET/EtherNetIP		
		communication setting 2		
		28–47: Reserved		
		0: No fault		
		29: PROFIBUS communication fault		
		(E-DP)		
		30: Ethernet communication fault		
		(E-NET)		
		31: CANopen communication fault		
		(E-CAN)		
		57: PROFINET communication		
		timeout fault (E-PN)		
		58: CAN communication timeout		
	Type of	fault (ESCAN)		
P07.27	current fault	60: Card identification failure in slot	/	/
		1 (F1-Er)		
		61: Card identification failure in slot		
		2 (F2-Er)		
		62: Card identification failure in slot		
		3 (F3-Er)		
		63: Card communication failure in		
		slot 1 (C1-Er)		
		64: Card communication failure in		
		slot 2 (C2-Er)		
		65: Card communication failure in		
		set cara commandation failure in		

Function code	Name	Parameter description	Setting range	Default value
		slot 3 (C3-Er)		
		66: EtherCAT communication fault		
		(E-CAT)		
		67: BACnet communication fault (E-		
		BAC)		
		68: DeviceNet communication fault (E-DEV)		
		69: CAN slave fault in master/slave synchronous communication (S- Err) 70: EtherNetIP communication timeout (E-EIP)		
P07.28	Type of last fault	/	/	/
P07.29	Type of 2nd- last fault	/	/	/
P07.30	Type of 3rd- last fault	/	/	/
P07.31	Type of 4th- last fault	/	/	/
P07.32	Type of 5th- last fault	1	/	/
P08.31	Motor 1 and motor 2 switching channel	0x00–0x14 LED ones place: Switching channel 0: Terminal 1: Modbus communication 2: PROFIBUS/CANopen/DeviceNet communication 3: Ethernet communication 4: EtherCAT/PROFINET/EtherNetIP communication LED tens place: Switching in running 0: Disabled 1: Enabled	00–14	0x00
P09.00	PID reference source	0: Keypad (P09.01) 1–6: Reserved 7: PROFIBUS/CANopen/DeviceNet communication 8: Ethernet communication 9: Reserved 10: EtherCAT/PROFINET/EtherNetIP communication 11–12: Reserved	0–12	0

Function code	Name	Parameter description	Setting range	Default value
P09.02	PID feedback source	0: Al1 1–4: Reserved 5: PROFIBUS/CANopen/DeviceNet communication 6: Ethernet communication 7: Reserved 8: EtherCAT/PROFINET/EtherNetIP communication 9–10: Reserved	0–10	0
P15.01	Module address	0–127	0–127	2
P15.02	Received PZD2	0: Invalid	0–31	0
P15.03	Received PZD3	1: Set frequency (0–Fmax, unit:	0–31	0
P15.04	Received PZD4		0–31	0
P15.05	Received PZD5	2: PID reference (0-1000, in which	0–31	0
P15.06		1000 corresponds to 100.0%)	0–31	0
P15.07		3: PID feedback (0–1000, in which	0–31	0
P15.08		1000 corresponds to 100.0%)	0-31	0
P15.09	Received PZD9	4: Torque setting (-3000-+3000, in	0–31	0
P15.10	Received PZD10	which 1000 corresponds to 100.0% of the rated current of the motor)	0–31	0
P15.11	Received PZD11	5: Setting of the upper limit of forward running frequency (0-	0–31	0
P15.12	Received PZD12	Fmax, unit: 0.01 Hz) 6: Setting of the upper limit of reverse running frequency (0– Fmax, unit: 0.01 Hz) 7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the motor) 8: Upper limit of the brake torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the motor) 9: Virtual input terminal command, 0x000–0x3FF (corresponding to S8, S7, S6, S5, HDIB, HDIA, S4, S3, S2, and S1 in sequence) 10: Virtual output terminal command, 0x00–0x0F (corresponding to R02, R01, HDO, and Y1 in sequence)	0–31	0

Function code	Name	Parameter description	Setting range	Default value
code		11:Voltagesetting(forV/Fseparation)(0–1000, in which 1000corresponds to 100.0% of the ratedvoltage of the motor)12:AO output setting 1 (-1000-+1000, in which 1000 correspondsto 100.0%)13:AO output setting 2 (-1000-+1000, in which 1000 correspondsto 100.0%)13:AO output setting 2 (-1000-+1000, in which 1000 correspondsto 100.0%)14:MSB of position reference(signed number)15:LSB of position feedback(signed number)16:MSB of position feedback(unsigned number)17:LSB of position feedback(unsigned number)18:Position feedback setting flag(position feedback can be set onlyafter this flag is set to 1 and then to0)19-31:Reserved	range	value
P15.13	Transmitted PZD2	0: Invalid 1: Running frequency (×100, Hz)	0–31	0
P15.14	Transmitted PZD3	2: Set frequency (×100, Hz) 3: Bus voltage (×10, V)	0–31	0
P15.15	Transmitted PZD4	4: Output voltage (×1, V) 5: Output current (×10, A)	0–31	0
P15.16	Transmitted PZD5	6: Actual output torque (×10, %) 7: Actual output power (×10, %)	0–31	0
P15.17	Transmitted PZD6	8: Rotating speed of the running (×1, RPM)	0–31	0
P15.18	Transmitted PZD7	9: Linear speed of the running (×1, m/s)	0–31	0
P15.19	Transmitted PZD8	10: Ramp frequency reference 11: Fault code	0–31	0
P15.20	Transmitted PZD9	12: Al1 value (×100, V) 13: Al2 value (×100, V)	0–31	0
P15.21	Transmitted PZD10	14: Al3 value (×100, V) 15: HDIA frequency (×100, kHz)	0–31	0
P15.22	Transmitted PZD11	16: Terminal input state 17: Terminal output state	0–31	0
P15.23	Transmitted PZD12	 18: PID reference (×100, %) 19: PID feedback (×100, %) 20: Rated torque of the motor 21: MSB of position reference 	0–31	0

Function code	Name	Parameter description	Setting range	Default value
		(signed number) 22: LSB of position reference (unsigned number) 23: MSB of position feedback (signed number) 24: LSB of position feedback (unsigned number) 25: State word 26: HDIB frequency value (×100, kHz) 27–31: Reserved		
P15.24	Temporary variable 1 used for transmitted PZD	0–65535	0–65535	0
P15.25	DP communicatio n timeout time	0.0 (invalid)–300.0s	0.0– 300.0	0.0s
P15.26	CANopen communicatio n timeout time	0.0 (invalid)–300.0s	0.0– 300.0	0.0s
P15.27	CANopen communicatio n baud rate	0: 1000 kbps 1: 800 kbps 2: 500 kbps 3: 250 kbps 4: 125 kbps 5: 100 kbps 6: 50 kbps 7: 20 kbps	0–7	0
P15.28	CAN communicatio n address	0–127	0–127	1
P15.29	CAN baud rate setting	0: 50 kbps 1: 125 kbps 2: 250 kbps 3: 500 kbps 4: 1 Mbps	0–4	1
P15.30	CAN communicatio n timeout time	0.0 (invalid)–300.0s	0.0– 300.0	0.0s
P15.31	DeviceNet communicatio n timeout time	0.0 (invalid)–300.0s	0.0– 300.0	0.0s
P15.32	Displayed node baud rate	0	0	0
P15.33	Enable polling	0–1	0–1	1
P15.34	Output instance in	19: ASTRAADA VFD output 20: ODVA basic speed control	19–27	19

Function code	Name	Parameter description	Setting range	Default value
	polling	output 21: ODVA extended speed control output 22: ODVA speed and torque control output 23: ODVA extended speed and torque control output 24: ASTRAADA basic speed control output 25: ASTRAADA extended speed control output 26: ASTRAADA speed and torque control output 27: ASTRAADA extended speed and torque control output		
P15.35	Input instance in polling	 69: ASTRAADA VFD input 70: ODVA basic speed control input 71: ODVA extended speed control input 72: ODVA speed and torque control input 73: ODVA extended speed and torque control input 74: ASTRAADA basic speed control input 75: ASTRAADA extended speed control input 76: ASTRAADA speed and torque control input 77: ASTRAADA speed and torque control input 77: ASTRAADA speed and torque control input 77: ASTRAADA extended speed and torque control input 77: ASTRAADA extended speed and torque control input 	69–77	69
P15.36	Enable state change/period	0–1	0–1	0
P15.37	Output instance in state change/period	 19: ASTRAADA VFD output 20: ODVA basic speed control output 21: ODVA extended speed control output 22: ODVA speed and torque control output 23: ODVA extended speed and torque control output 24: ASTRAADA basic speed control output 	19–27	19

Function code	Name	Parameter description	Setting range	Default value
		 25: ASTRAADA extended speed control output 26: ASTRAADA speed and torque control output 27: ASTRAADA extended speed and torque control output 		
P15.38	Input instance in state change/period	 69: ASTRAADA VFD input 70: ODVA basic speed control input 71: ODVA extended speed control input 72: ODVA speed and torque control input 73: ODVA extended speed and torque control input 74: ASTRAADA basic speed control input 75: ASTRAADA extended speed control input 76: ASTRAADA speed and torque control input 77: ASTRAADA speed and torque control input 77: ASTRAADA extended speed and torque control input 77: ASTRAADA speed and torque control input 	69–77	69
P15.39	Output length of component 19	8–32	8–32	32
P15.40	Input length of component 19	8–32	8–32	32
P15.41	BACnet communicatio n mode setting	0: Enable P16.22 (I_Am service) 1: Enable P15.42 (Baud rate of BACnet_MSTP)	0–1	0
P15.42	Baud rate of BACnet_MSTP	0–5	0–5	0
P15.43– P15.69	Reserved			
P16.01	Ethernet communicatio n rate setting	0: Self-adaption 1: 100M full duplex 2: 100M half duplex 3: 10M full duplex 4: 10M half duplex	0–4	0
P16.02	IP address 1	0–255	0–255	192
P16.03	IP address 2	0–255	0–255	168
P16.04	IP address 3	0–255	0–255	0
P16.05	IP address 4	0–255	0–255	1
P16.06	Subnet mask 1	0–255	0–255	255

Function code	Name	Parameter description	Setting range	Default value
P16.07	Subnet mask 2	0–255	0-255	255
P16.08	Subnet mask 3	0–255	0–255	255
P16.09	Subnet mask 4	0–255	0–255	0
P16.10	Gateway 1	0–255	0–255	192
P16.11	Gateway 2	0–255	0–255	168
P16.12	Gateway 3	0–255	0–255	1
P16.13	Gateway 4	0–255	0–255	1
P16.14	Ethernet monitoring variable	0x0000–0xFFFF	0000– FFFF	0x0000
	address 1			
P16.15	Ethernet monitoring variable address 2	0x0000-0xFFFF	0000– FFFF	0x0000
P16.16	Ethernet monitoring variable address 3	0x0000–0xFFFF	0000– FFFF	0x0000
P16.17	Ethernet monitoring variable address 4	0x0000–0xFFFF	0000– FFFF	0x0000
P16.18	EtherCAT communicatio n timeout time	0.0 (invalid)–300.0s	0.0– 300.0s	0.5s
P16.19	Reserved			
P16.20	MSD of BACnet device number	Independent code of BACnet device	0–4194	0
P16.21	LSD of BACnet device number	(0–4194303)	0–999	1
P16.22	BACnet "I-Am" service setting	0: Transmission at power-on 1: Continuous transmission	0–1	0
P16.23	BACnet communicatio n timeout time	0.0 (invalid)–300.0s	0.0– 300.0	0.0s
P16.24	Extension card identification time of slot 1	0.0–600.0s When this parameter is set to 0.0, identification fault detection is not performed.	0.0– 600.00	0.0
P16.25	Extension card identification time of slot 2	0.0–600.0s When this parameter is set to 0.0, identification fault detection is not performed.	0.0– 600.00	0.0

Function code	Name	Parameter description	Setting range	Default value
P16.26	Extension card identification time of slot 3	0.0–600.0s When this parameter is set to 0.0, identification fault detection is not performed.	0.0– 600.00	0.0
P16.27	Extension card communicatio n timeout time of slot 1	0.0-600.0s When this parameter is set to 0.0, disconnection fault detection is not performed.	0.0– 600.00	0.0
P16.28	Extension card communicatio n timeout time of slot 2	When this parameter is set to 0.0,	0.0– 600.00	0.0
P16.29	Extension card communicatio n timeout time of slot 3		0.0– 600.00	0.0
P16.30	Reserved			
P16.31	PROFINET communicatio n timeout time	0.0 (invalid)–300.0s	0.0– 300.0	0.0s
P16.32	Received PZD2	0: Invalid	0-31	0
P16.33		1: Set frequency (0–Fmax, unit:	0-31	0
P16.34	Received PZD4	0.01 Hz)	0-31	0
P16.35	Received PZD5	2: PID reference (0–1000, in which	0-31	0
P16.36	Received PZD6	1000 corresponds to 100.0%)	0-31	0
P16.37		3: PID feedback (0–1000, in which	0-31	0
P16.38	Received PZD8	1000 corresponds to 100.0%)	0-31	0
P16.39	Received PZD9	4: Torque setting (-3000–+3000, in	0-31	0
P16.40	Received PZD10	which 1000 corresponds to 100.0% of the rated current of the motor)	0-31	0
P16.41	Received PZD11	5: Setting of the upper limit of forward running frequency (0–	0–31	0
P16.42	Received PZD12	 Fmax, unit: 0.01 Hz) 6: Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01 Hz) 7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the motor) 8: Upper limit of the brake torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the motor) 9: Virtual input terminal command, 0x000–0x3FF (corresponding to S8, 	0–31	0

Function code	Name	Parameter description	Setting range	Default value
		 S7, S6, S5, HDIB, HDIA, S4, S3, S2, and S1 in sequence) 10: Virtual output terminal command, 0x00–0x0F (corresponding to RO2, RO1, HDO, and Y1 in sequence) 11: Voltage setting (for V/F separation) (0–1000, in which 1000 corresponds to 100.0% of the rated voltage of the motor) 12: AO output setting 1 (-1000–+1000, in which 1000 corresponds to 100.0%) 13: AO output setting 2 (-1000-+1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed number) 15: LSB of position reference (unsigned number) 16: MSB of position feedback (signed number) 17: LSB of position feedback (unsigned number) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19–31: Reserved 		Value
P16.43	Transmitted PZD2	0: Invalid 1: Running frequency (×100, Hz)	0–31	0
P16.44	Transmitted PZD3	2: Set frequency (×100, Hz) 3: Bus voltage (×10, V)	0–31	0
P16.45	Transmitted PZD4	4: Output voltage (×1, V) 5: Output current (×10, A)	0–31	0
P16.46	Transmitted PZD5	6: Actual output torque (×10, %) 7: Actual output power (×10, %)	0–31	0
P16.47	Transmitted PZD6	8: Rotating speed of the running (×1, RPM)	0–31	0
P16.48	Transmitted PZD7	9: Linear speed of the running (×1, m/s)	0–31	0
P16.49	Transmitted PZD8	10: Ramp frequency reference 11: Fault code	0–31	0
P16.50	Transmitted		0–31	0

Function code	Name	Parameter description	Setting range	Default value
	PZD9	12: Al1 value (×100, V)		
P16.51	Transmitted	13: Al2 value (×100, V)	0–31	0
1 10.51	PZD10	14: AI3 value (×100, V)	0.01	0
P16.52	Transmitted	15: HDIA frequency (×100, kHz)	0–31	0
1 20:02	PZD11	16: Terminal input state	0 01	Ũ
P16.53	Transmitted PZD12	 17: Terminal output state 18: PID reference (×100, %) 19: PID feedback (×100, %) 20: Rated torque of the motor 21: MSB of position reference (signed number) 22: LSB of position reference (unsigned number) 23: MSB of position feedback (signed number) 24: LSB of position feedback (unsigned number) 25: State word 26: HDIB frequency value (×100, kHz) 27–31: Reserved 	0–31	0
P16.54	EtherNet/IP communicatio n timeout time	0.5–60.0s	0.5– 60.0s	0.0s
P16.55	EtherNet/IP	0: Self-adaption 1: 100M full duplex 2: 100M half duplex 3: 10M full duplex 4: 10M half duplex	0–4	0
P16.56	EtherNetIP control and state word definition method	0: Define by byte 1: Define by bit	0–1	0
P19.00	State of card slot 1	0: No card 1: PLC programmable card	0–65535	0
P19.01	State of card slot 2	2: I/O card 3: Incremental PG card	0–65535	0
P19.02	State of card slot 3	4: Incremental PG card with UVW 5: Ethernet communication card 6: DP communication card 7: Bluetooth card 8: Resolver PG card 9: CANOPEN communication card 10: WIFI card	0–65535	0

Function code	Name	Parameter description	Setting range	Default value
		11: PROFINET communication card		
		12: Sine-cosine PG card without CD		
		signals		
		13: Sine-cosine PG card with CD		
		signals		
		14: Absolute encoder PG card		
		15: CAN master/slave		
		communication card		
		16: MODBUS communication card		
		17: EtherCat communication card		
		18: BacNet communication card		
		19: DeviceNet communication card		
		20: EtherNet/IP communication		
		card		

ASTOR Sp. z o.o. ul. Smoleńsk 29 31-112 Kraków, Poland www.astor.com.pl produkty@astor.com.pl

Version 1.2

All rights reserved. No part of this manual covered by copyrights hereon may be reproduced or transmitted in any form by any means without prior permission of ASTOR Sp. z o.o.